exploration, rocket

2,678 media by topicpage 1 of 27
CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel.  Their total weight is approximately 160,000 pounds.  The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket.  Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit.  Photo credit: NASA/Kim Shiflett KSC-08pd3248

CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblie...

CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for... More

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch.        The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2818

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft...

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch. The solar-power... More

CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Complex 39B at NASA's Kennedy Space Center in Florida.  The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds.    Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired.  The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals.  For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.  Photo credit: NASA/Jim Grossmann KSC-2009-5933

CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by ...

CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Complex 39B at NASA's Kennedy Space Center in F... More

CAPE CANAVERAL, Fla. – The first stage ignited on NASA’s Ares I-X test rocket at Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Sandra Joseph and Kevin O'Connell KSC-2009-5987

CAPE CANAVERAL, Fla. – The first stage ignited on NASA’s Ares I-X test...

CAPE CANAVERAL, Fla. – The first stage ignited on NASA’s Ares I-X test rocket at Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. The rocket produces 2.96 million pounds of... More

Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California.    (Highest resolution available) n/a

Under the goals of the Vision for Space Exploration, Ares I is a chief...

Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation sy... More

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at NASA's Marshall Space Flight Center in Huntsville, Alabama. The briefing took place in the spaceport's Booster Fabrication Facility BFF. During the Space Shuttle Program, the facility was used for processing forward segments and aft skirts for the solid rocket boosters. The BFF will serve a similar role for the SLS.      Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett KSC-2014-4616

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, memb...

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at ... More

CAPE CANAVERAL, Fla. – In the Atlantic Ocean off the coast of NASA's Kennedy Space Center in Florida, United Space Alliance Recovery Operations personnel pull a colorful main parachute for the Ares I-X rocket onto the deck of the solid rocket booster recovery ship Freedom Star following the launch of the flight test mission.    Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired.  The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals.  For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.  Photo credit: United Space Alliance KSC-2009-5999

CAPE CANAVERAL, Fla. – In the Atlantic Ocean off the coast of NASA's K...

CAPE CANAVERAL, Fla. – In the Atlantic Ocean off the coast of NASA's Kennedy Space Center in Florida, United Space Alliance Recovery Operations personnel pull a colorful main parachute for the Ares I-X rocket o... More

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a full-size mock-up of the Orion spacecraft and launch abort system were transported to the Kennedy Space Center Visitor Complex. In the background are full-size replicas of the external fuel tank and solid rocket boosters that mark the entranceway to the new Space Shuttle Atlantis exhibit. Crane operators and technicians practice de-stacking operations on mock-ups of Orion and the launch abort system in the Vehicle Assembly Building in order to keep processing procedures and skills current.    Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann KSC-2013-2903

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a fu...

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a full-size mock-up of the Orion spacecraft and launch abort system were transported to the Kennedy Space Center Visitor Complex. In the backgro... More

CAPE CANAVERAL, Fla. – A view from inside the new “Space Shuttle Atlantis” exhibit at the Kennedy Space Center Visitor Complex in Florida, shows the buildup of the replica solid rocket boosters and external fuel tank are nearly complete near the entrance. Atlantis is being prepared for display in the 90,000-square-foot facility, scheduled to open June 29, 2013.    The new $100 million facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Visitors to the exhibit will get an up close look at Atlantis with its payload bay doors open, similar to how it looked in space. Photo credit: NASA/Jim Grossmann KSC-2013-2590

CAPE CANAVERAL, Fla. – A view from inside the new “Space Shuttle Atlan...

CAPE CANAVERAL, Fla. – A view from inside the new “Space Shuttle Atlantis” exhibit at the Kennedy Space Center Visitor Complex in Florida, shows the buildup of the replica solid rocket boosters and external fue... More

CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, workers prepare to inspect the spent first stage of NASA's Ares I-X rocket, secured in a slip.  The booster was recovered by the solid rocket booster recovery ship Freedom Star after it splashed down in the Atlantic Ocean following its flight test.    Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired.  The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals.  For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.  Photo credit: NASA/Kim Shiflett KSC-2009-6031

CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Statio...

CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, workers prepare to inspect the spent first stage of NASA's Ares I-X rocket, secured in a slip. The booster was recovered by t... More

CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket ignites its first stage at Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. The Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ George Roberts and Tony Gray KSC-2009-5968

CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket ignites its first s...

CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket ignites its first stage at Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. The Constellation Program's 327-foot-tall roc... More

CAPE CANAVERAL, Fla. -- Viewed from the Launch Pad 39A flame trench, crawler-transporter No. 2 moves under a space shuttle era mobile launcher platform at NASA's Kennedy Space Center in Florida. The activity was part of testing to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad.      NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each weighing six and a half million pounds and larger in size than a professional baseball infield, the crawler-transporters are powered by locomotive and large electrical power generator engines. The crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Jim Grossmann KSC-2012-6273

CAPE CANAVERAL, Fla. -- Viewed from the Launch Pad 39A flame trench, c...

CAPE CANAVERAL, Fla. -- Viewed from the Launch Pad 39A flame trench, crawler-transporter No. 2 moves under a space shuttle era mobile launcher platform at NASA's Kennedy Space Center in Florida. The activity wa... More

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar array #1 that will help power the NASA spacecraft on its mission to Jupiter.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2821

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processin...

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar a... More

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the sixth tower segment is lifted toward five segments already secured to a new mobile launcher, or ML, being constructed to support the Constellation Program.    When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket.  For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jim Grossmann KSC-2009-6788

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the ...

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the sixth tower segment is lifted toward five segments already secured to a new mobile launcher, or ML, being constructed to support the Constel... More

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida where Applied Physics Laboratory technicians will begin spacecraft testing and prelaunch preparations.  The twin RBSP spacecraft arrived at Kennedy’s Shuttle Landing Facility in the cargo bay of a U.S. Air Force C-17 aircraft earlier in the day.          The RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. The RBSP instruments will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The mission is part of NASA’s broader Living With a Star Program that was conceived to explore fundamental processes that operate throughout the solar system, and in particular those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP is scheduled to begin its mission of exploration of Earth's Van Allen Radiation Belts and the extremes of space weather after launch. Launch aboard a United Launch Alliance Atlas V rocket is scheduled for August 23.  For more information, visit http://www.nasa.gov/rbsp.  Photo credit: NASA/Kim Shiflett KSC-2012-2638

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation B...

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’... More

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fourth section is lowered into position.    The tower will be approximately 345 feet tall when completed and have multiple platforms for personnel access. The ML is being built at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket.  For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller KSC-2009-6225

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the ...

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fourth section is lowered into position. The tower will... More

CAPE CANAVERAL, Fla. – The Ares I-X test rocket launches into a bright Florida sky from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/George Roberts and Tom Farrar KSC-2009-5973

CAPE CANAVERAL, Fla. – The Ares I-X test rocket launches into a bright...

CAPE CANAVERAL, Fla. – The Ares I-X test rocket launches into a bright Florida sky from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-... More

KENNEDY SPACE CENTER, FLA. --  In the transfer aisle of the Vehicle Assembly Building, space shuttle Endeavour is lifted off its transporter.  The shuttle will be raised to a vertical position and lifted up into high bay 1 to be attached to its external fuel tank and solid rocket boosters in preparation for launch on the STS-123 mission, targeted for March 11.  The mission will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre.   Photo credit: NASA/Dimitri Gerondidakis KSC-08pd0275

KENNEDY SPACE CENTER, FLA. -- In the transfer aisle of the Vehicle As...

KENNEDY SPACE CENTER, FLA. -- In the transfer aisle of the Vehicle Assembly Building, space shuttle Endeavour is lifted off its transporter. The shuttle will be raised to a vertical position and lifted up int... More

KENNEDY SPACE CENTER, FLA. -- Inside the Orbiter Processing Facility, space shuttle Endeavour settles on its transporter for the trip to the Vehicle Assembly Building.  In high bay 1 of the VAB, Endeavour will be attached to its external fuel tank and solid rocket boosters in preparation for its upcoming mission, STS-123, to the International Space Station targeted for March 11.  The mission will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre.   Photo credit: NASA/Jim Grossmann KSC-08pd0264

KENNEDY SPACE CENTER, FLA. -- Inside the Orbiter Processing Facility, ...

KENNEDY SPACE CENTER, FLA. -- Inside the Orbiter Processing Facility, space shuttle Endeavour settles on its transporter for the trip to the Vehicle Assembly Building. In high bay 1 of the VAB, Endeavour will ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves a space shuttle era mobile launcher platform at Launch Pad 39A. The activity was part of testing to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad.      NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each weighing six and a half million pounds and larger in size than a professional baseball infield, the crawler-transporters are powered by locomotive and large electrical power generator engines. The crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann KSC-2012-6289

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, cra...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves a space shuttle era mobile launcher platform at Launch Pad 39A. The activity was part of testing to check out r... More

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparations for launch.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2829

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's pay...

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparati... More

CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA’s Ares I-X test rocket soars into blue skies above Launch Pad 39B at NASA's Kennedy Space Center in Florida.  The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds.    Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired.  The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals.  For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.  Photo credit: NASA/Sandra Joseph and Kevin O'Connel KSC-2009-6008

CAPE CANAVERAL, Fla. - With more than 23 times the power output of the...

CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA’s Ares I-X test rocket soars into blue skies above Launch Pad 39B at NASA's Kennedy Space Center in Florida. The rocket p... More

Dr. von Braun began his association with Walt Disney in the 1950s when the rocket scientist appeared in three Disney television productions related to the exploration of space. Years later, Dr. von Braun invited Disney and his associates to tour the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This photograph is dated April 13, 1965. From left are R.J. Schwinghamer from the MSFC, Disney, B.J. Bennight, and Dr. von Braun. n/a

Dr. von Braun began his association with Walt Disney in the 1950s when...

Dr. von Braun began his association with Walt Disney in the 1950s when the rocket scientist appeared in three Disney television productions related to the exploration of space. Years later, Dr. von Braun invite... More

The first stage (S-1-C) of Apollo 6 (A/S 502) is erected at the Vehicle Assembly Building. The unmanned Apollo 6 mission will be launched by a Saturn V rocket and will conduct systems tests, propulsion burns and heat-shield tests at re-entry speeds

The first stage (S-1-C) of Apollo 6 (A/S 502) is erected at the Vehicl...

The original finding aid described this photograph as: Base: Kennedy Space Center State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Nasa Release Status: Released to Public ... More

A Saturn 1B space launch vehicle lifts off from Launch Complex 34 carrying Apollo 7 astronauts Walter M. Schirra Jr., Donn F. Eisele and Walter Cunningham

A Saturn 1B space launch vehicle lifts off from Launch Complex 34 carr...

The original finding aid described this photograph as: Base: Cape Kennedy State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Nasa Release Status: Released to Public Combined... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell.  In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1091

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, j... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1061

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1104

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left.  The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1087

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraf... More

Indian River Lagoon National Scenic Byway - Apollo Saturn V Rocket

Indian River Lagoon National Scenic Byway - Apollo Saturn V Rocket

The original finding aid described this photograph as: Original Caption: Visitors at the Kennedy Space Center Visitor Complex admire the gigantic Apollo Saturn V Rocket. Location: Location: Florida (28.605° N... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform.  The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1089

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1103

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the firs... More

KENNEDY SPACE CENTER, FLA. --  This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell.  The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1097

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lan...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payl... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1062

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1095

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the fi... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1106

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first proje... More

KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell with the Phoenix Mars Lander inside is ready for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1096

KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell...

KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell with the Phoenix Mars Lander inside is ready for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft.  The crane will be used to remove the heat shield from around the Phoenix.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1084

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the P... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1105

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first op... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft.  The crane will be used to remove the heat shield from around the Phoenix.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1085

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Ph... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1058

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1088

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander ... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1094

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell w...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is th... More

KENNEDY SPACE CENTER, FLA. --  After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is secure on a flat bed truck for transportation to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1060

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Cent...

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is secure on a flat bed truck for transportation to the Payload Hazardous Servi... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility.  The spacecraft is being moved to a spin table (back left) for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1092

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell wi...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility. The spacecraft is being moved to a spin t... More

KENNEDY SPACE CENTER, FLA. --   This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1099

KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of th...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed ... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1056

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside. The Phoenix m... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, media dressed in clean-room garb document the arrival of the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1063

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, media dressed in clean-room garb document the arrival of the Phoenix spacecraft. The spacecraft arrived May 7 ... More

KENNEDY SPACE CENTER, FLA. --  The unwrapped Phoenix spacecraft is on display in the Payload Hazardous Servicing Facility.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1067

KENNEDY SPACE CENTER, FLA. -- The unwrapped Phoenix spacecraft is on ...

KENNEDY SPACE CENTER, FLA. -- The unwrapped Phoenix spacecraft is on display in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Ma... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell.  In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1090

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, j... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb remove the protective wrapping from around the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1066

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb remove the protective wrapping from around the Phoenix spacecraft. The Phoe... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers move the platform with the Phoenix spacecraft into another room. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1064

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers move the platform with the Phoenix spacecraft into another room. The Phoenix mission is the first proj... More

KENNEDY SPACE CENTER, FLA. --  This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell.  The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1098

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lan...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payl... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1108

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed pr... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1086

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's f... More

KENNEDY SPACE CENTER, FLA. --  After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft has been placed on a flat bed truck for transportation to the Payload Hazardous Servicing Facility.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1059

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Cent...

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft has been placed on a flat bed truck for transportation to the Payload Hazardous... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb begin removing the protective wrapping from around the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1065

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb begin removing the protective wrapping from around the Phoenix spacecraft. ... More

KENNEDY SPACE CENTER, FLA. --  This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1055

KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster II...

KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1107

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed pr... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1093

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell w...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is ... More

KENNEDY SPACE CENTER, FLA. --   In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1100

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fac...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed p... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III.  The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1057

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III.... More

SAN DIEGO, Calif. – NASA Administrator Charlie Bolden, center, talks to Milt Heflin on the USS Anchorage on the first day of Orion Underway Recovery Test 3. Heflin was a former space shuttle flight director and Mission Operations executive with experience as a recovery engineer for several Apollo, Skylab and Apollo-Soyuz Test Project missions. At left is Brandi Dean, NASA Public Affairs Office. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters.    The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston KSC-2014-3946

SAN DIEGO, Calif. – NASA Administrator Charlie Bolden, center, talks t...

SAN DIEGO, Calif. – NASA Administrator Charlie Bolden, center, talks to Milt Heflin on the USS Anchorage on the first day of Orion Underway Recovery Test 3. Heflin was a former space shuttle flight director and... More

A view of the NASA Space Shuttle Program Solid Rocket Booster Deceleration Subsystem, after a parachute drop test at the National Parachute Test Range

A view of the NASA Space Shuttle Program Solid Rocket Booster Decelera...

The original finding aid described this photograph as: Base: Naval Air Facility, El Centro State: California (CA) Country: United States Of America (USA) Scene Camera Operator: PH2 E. L. Tedder Release Sta... More

A view of the NASA Space Shuttle Program Solid Rocket Booster Deceleration Subsystem, as it approaches its impact point during a parachute drop test at the National Parachute Test Range

A view of the NASA Space Shuttle Program Solid Rocket Booster Decelera...

The original finding aid described this photograph as: Base: Naval Air Facility, El Centro State: California (CA) Country: United States Of America (USA) Scene Camera Operator: PH2 E.L. Tedder Release Stat... More

The Pioneer Venus-A aboard an Atlas Centaur 50 rocket lifts off

The Pioneer Venus-A aboard an Atlas Centaur 50 rocket lifts off

The original finding aid described this photograph as: Base: Patrick Air Force Base State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Pu... More

The space shuttle Enterprise in the launch position. This is the first time that the complete space shuttle configuration has been assembled

The space shuttle Enterprise in the launch position. This is the first...

The original finding aid described this photograph as: Base: Kennedy Space Center State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Publ... More

Aerial view of the rocket booster-mounted Columbia space shuttle orbiter on a launch pad

Aerial view of the rocket booster-mounted Columbia space shuttle orbit...

The original finding aid described this photograph as: Base: Cape Canaveral Air Force Station State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Afsc Release Status: Release... More

The space shuttle Enterprise, mated to an external tank and solid rocket boosters, rests on the launch mount next to the access tower at Space Launch Complex Six

The space shuttle Enterprise, mated to an external tank and solid rock...

The original finding aid described this photograph as: Base: Vandenberg Air Force Base State: California (CA) Country: United States Of America (USA) Scene Camera Operator: TSGT James R. Pearson Release St... More

The space shuttle Enterprise, mated to an external tank and solid rocket boosters, rests on the launch mount next to the access tower at Space Launch Complex Six. On the far right is the mobile service tower and on the left are the payload preparation room, payload changeout room and the shuttle assembly building (marked USAF)

The space shuttle Enterprise, mated to an external tank and solid rock...

The original finding aid described this photograph as: Base: Vandenberg Air Force Base State: California (CA) Country: United States Of America (USA) Scene Camera Operator: TSGT James R. Pearson Release St... More

The space shuttle Enterprise, mated to an external tank and solid rocket boosters, rests on the launch mount at Space Launch Complex Six. On the far right is the mobile service tower and on the left are the payload preparation room, payload changeout room and the shuttle assembly building (marked USAF)

The space shuttle Enterprise, mated to an external tank and solid rock...

The original finding aid described this photograph as: Base: Vandenberg Air Force Base State: California (CA) Country: United States Of America (USA) Scene Camera Operator: TSGT James R. Pearson Release St... More

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Launch Complex 17, Pad A, technicians encapsulate the Geotail spacecraft upper and attached Payload Assist Module-D upper stage lower in the protective payload fairing. Geotail and secondary payload Diffuse Ultraviolet Experiment DUVE are scheduled for launch about the Delta II rocket on July 24. The GEOTAIL mission is a collaborative project undertaken by the Institute of Space and Astronautical Science ISAS, Japan Aerospace Exploration Agency JAXA and NASA. Photo Credit: NASA KSC-92PC-1538

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Launch C...

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Launch Complex 17, Pad A, technicians encapsulate the Geotail spacecraft upper and attached Payload Assist Module-D upper stage lower in the protect... More

A Lockheed Martin Titan IVB launch vehicle is ready for liftoff from complex 40. The rocket will carry the Cassini Interplanetary mission to Saturn and its moon, Titan

A Lockheed Martin Titan IVB launch vehicle is ready for liftoff from c...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Range Visual Info. TECH. Service Release Statu... More

KENNEDY SPACE CENTER, FLA. -- The newly added Robot Scouts exhibit at the KSC Visitor Complex is situated next to the Rocket Garden. Part of the $13 million expansion to the Visitor Complex, the exhibit helps describe for visitors the accomplishments of unsung space heroes space probes and their role in space exploration. It also includes a display of how data from robotic probes might be used to build a human habitat for Mars. Visitors can witness a simulated Martian sunset. Other additions include a new foyer, films, and an International Space Station-themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge KSC-99pp0407

KENNEDY SPACE CENTER, FLA. -- The newly added Robot Scouts exhibit at ...

KENNEDY SPACE CENTER, FLA. -- The newly added Robot Scouts exhibit at the KSC Visitor Complex is situated next to the Rocket Garden. Part of the $13 million expansion to the Visitor Complex, the exhibit helps d... More

In the Spacecraft Assembly and Encapsulation Facility 2, the bottom panels of the canister are already in place around the Mars Odyssey orbiter (right). Next to it is the cylindrical upper canister waiting to be attached. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0649

In the Spacecraft Assembly and Encapsulation Facility 2, the bottom pa...

In the Spacecraft Assembly and Encapsulation Facility 2, the bottom panels of the canister are already in place around the Mars Odyssey orbiter (right). Next to it is the cylindrical upper canister waiting to b... More

An overhead crane lowers the cylindrical canister over the Mars Odyssey orbiter below it. The canister will protect the spacecraft during transfer to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Pad 17-A. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0652

An overhead crane lowers the cylindrical canister over the Mars Odysse...

An overhead crane lowers the cylindrical canister over the Mars Odyssey orbiter below it. The canister will protect the spacecraft during transfer to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars ... More

An overhead crane lifts the cylindrical canister toward the Mars Odyssey orbiter. The canister will be lowered over the spacecraft to protect it during transfer to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Pad 17-A. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0650

An overhead crane lifts the cylindrical canister toward the Mars Odyss...

An overhead crane lifts the cylindrical canister toward the Mars Odyssey orbiter. The canister will be lowered over the spacecraft to protect it during transfer to Launch Pad 17-A, Cape Canaveral Air Force Stat... More

In the Spacecraft Assembly and Encapsulation Facility 2, workers attach the upper canister to lower panels that surround the Mars Odyssey orbiter. The canister will protect the spacecraft during transfer to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Pad 17-A. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0653

In the Spacecraft Assembly and Encapsulation Facility 2, workers attac...

In the Spacecraft Assembly and Encapsulation Facility 2, workers attach the upper canister to lower panels that surround the Mars Odyssey orbiter. The canister will protect the spacecraft during transfer to Lau... More

An overhead crane lowers the cylindrical canister toward the Mars Odyssey orbiter below it. The canister will protect the spacecraft during transfer to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Pad 17-A. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0651

An overhead crane lowers the cylindrical canister toward the Mars Odys...

An overhead crane lowers the cylindrical canister toward the Mars Odyssey orbiter below it. The canister will protect the spacecraft during transfer to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mar... More

On Launch Pad 17-A, Cape Canaveral Air Force Station, the Mars Odyssey orbiter is ready to be lifted up the gantry and mated with the Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0631

On Launch Pad 17-A, Cape Canaveral Air Force Station, the Mars Odyssey...

On Launch Pad 17-A, Cape Canaveral Air Force Station, the Mars Odyssey orbiter is ready to be lifted up the gantry and mated with the Delta II rocket. The spacecraft will map the Martian surface in search of ge... More

The Mars Odyssey spacecraft nears its destination on the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0634

The Mars Odyssey spacecraft nears its destination on the gantry at Lau...

The Mars Odyssey spacecraft nears its destination on the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket. The spacecraft will map the Martian surface... More

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, start attaching the Mars Odyssey orbiter to the Boeing Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0640

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, start at...

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, start attaching the Mars Odyssey orbiter to the Boeing Delta II rocket. The spacecraft will map the Martian surface in search of geological features... More

The Mars Odyssey spacecraft (left) disappears into the top of the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket seen in the center. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0636

The Mars Odyssey spacecraft (left) disappears into the top of the gant...

The Mars Odyssey spacecraft (left) disappears into the top of the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket seen in the center. The spacecraft ... More

On Launch Pad 17-A, Cape Canaveral Air Force Station, a worker begins removing the bottom panels from around the Mars Odyssey orbiter. The spacecraft is being mated to a Boeing Delta II rocket for launch scheduled at 11:02 a.m. EDT April 7. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0646

On Launch Pad 17-A, Cape Canaveral Air Force Station, a worker begins ...

On Launch Pad 17-A, Cape Canaveral Air Force Station, a worker begins removing the bottom panels from around the Mars Odyssey orbiter. The spacecraft is being mated to a Boeing Delta II rocket for launch schedu... More

The 2001 Mars Odyssey spacecraft, wrapped in protective covering, leaves the Space Assembly and Encapsulation Facility 2 on a transporter to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0628

The 2001 Mars Odyssey spacecraft, wrapped in protective covering, leav...

The 2001 Mars Odyssey spacecraft, wrapped in protective covering, leaves the Space Assembly and Encapsulation Facility 2 on a transporter to Launch Pad 17-A, Cape Canaveral Air Force Station. The Mars Odyssey i... More

On Launch Pad 17-A, Cape Canaveral Air Force Station, the Mars Odyssey orbiter begins moving up the gantry for mating with the Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0632

On Launch Pad 17-A, Cape Canaveral Air Force Station, the Mars Odyssey...

On Launch Pad 17-A, Cape Canaveral Air Force Station, the Mars Odyssey orbiter begins moving up the gantry for mating with the Delta II rocket. The spacecraft will map the Martian surface in search of geologica... More

The Mars Odyssey spacecraft (left) nears the top of the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket seen in the center. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0635

The Mars Odyssey spacecraft (left) nears the top of the gantry at Laun...

The Mars Odyssey spacecraft (left) nears the top of the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket seen in the center. The spacecraft will map t... More

In the early morning before dawn the 2001 Mars Odyssey spacecraft arrives at Launch Pad 17-A, Cape Canaveral Air Force Station. It will be mated with the Delta II rocket that will launch it. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0629

In the early morning before dawn the 2001 Mars Odyssey spacecraft arri...

In the early morning before dawn the 2001 Mars Odyssey spacecraft arrives at Launch Pad 17-A, Cape Canaveral Air Force Station. It will be mated with the Delta II rocket that will launch it. The spacecraft will... More

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, get ready to move the Mars Odyssey spacecraft into the clean room at the top of the gantry. There it will be mated encased by the fairing of the Delta II rocket already in place. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0637

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, get read...

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, get ready to move the Mars Odyssey spacecraft into the clean room at the top of the gantry. There it will be mated encased by the fairing of the Del... More

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers remove another panel from around the Mars Odyssey orbiter. The spacecraft is being mated to a Boeing Delta II rocket for launch scheduled at 11:02 a.m. EDT April 7. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0647

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers remove a...

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers remove another panel from around the Mars Odyssey orbiter. The spacecraft is being mated to a Boeing Delta II rocket for launch scheduled at 11:02 a... More

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, help guide the Mars Odyssey spacecraft into position for the enclosure by the fairing of the Delta II rocket already in place. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0638

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, help gui...

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, help guide the Mars Odyssey spacecraft into position for the enclosure by the fairing of the Delta II rocket already in place. The spacecraft will m... More

With the Delta II rocket’s first and second stages standing by (right), the Mars Odyssey orbiter is lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, for mating with the Delta II. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0633

With the Delta II rocket’s first and second stages standing by (right)...

With the Delta II rocket’s first and second stages standing by (right), the Mars Odyssey orbiter is lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, for mating with the Delta II. The s... More

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, oversee the Mars Odyssey orbiter as it is lowered toward the Boeing Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0639

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, oversee ...

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, oversee the Mars Odyssey orbiter as it is lowered toward the Boeing Delta II rocket. The spacecraft will map the Martian surface in search of geolog... More

The Mars Odyssey orbiter, with a protective cover on top, waits on Launch Pad 17-A, Cape Canaveral Air Force Station, for the fairing of the Boeing Delta II rocket to be installed. Scheduled to launch 11:02 a.m. EDT April 7, the spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars KSC01pp0648

The Mars Odyssey orbiter, with a protective cover on top, waits on Lau...

The Mars Odyssey orbiter, with a protective cover on top, waits on Launch Pad 17-A, Cape Canaveral Air Force Station, for the fairing of the Boeing Delta II rocket to be installed. Scheduled to launch 11:02 a.m... More

At sunrise on Launch Pad 17-A, Cape Canaveral Air Force Station, workers begin attaching a crane to the top of the Mars Odyssey orbiter. The spacecraft will be lifted up the gantry and mated with the Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0630

At sunrise on Launch Pad 17-A, Cape Canaveral Air Force Station, worke...

At sunrise on Launch Pad 17-A, Cape Canaveral Air Force Station, workers begin attaching a crane to the top of the Mars Odyssey orbiter. The spacecraft will be lifted up the gantry and mated with the Delta II r... More

KENNEDY SPACE CENTER, FLA. -  The first stage of the Delta II rocket to launch the MER-A (Mars Exploration Rover) vehicle arrives at Pad 17-A on Cape Canaveral Air Force Station. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6. KSC-03pd1209

KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket t...

KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket to launch the MER-A (Mars Exploration Rover) vehicle arrives at Pad 17-A on Cape Canaveral Air Force Station. The MER Mission consists of two... More

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is nearly vertical in the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6. KSC-03pd1215

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Sta...

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is nearly vertical in the launch tower. The Delta will launch the Mars Exploration Rover (MER-A... More

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6. KSC-03pd1219

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Sta...

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle... More

KENNEDY SPACE CENTER, FLA. -  Workers on Pad 17-A, Cape Canaveral Air Force Station, work on the bottom of the first stage of the Delta II rocket being lifted up the launch tower.  The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6. KSC-03pd1218

KENNEDY SPACE CENTER, FLA. - Workers on Pad 17-A, Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. - Workers on Pad 17-A, Cape Canaveral Air Force Station, work on the bottom of the first stage of the Delta II rocket being lifted up the launch tower. The Delta will launch the Mar... More

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket achieves vertical position at the launch tower.  The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6. KSC-03pd1216

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Sta...

KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket achieves vertical position at the launch tower. The Delta will launch the Mars Exploration Rov... More

Previous

of 27

Next