ray, air force

223 media by topicpage 1 of 3
Facility operators Earl Sine and Joe Manson and CPT Ray Pope (left to right) operate the master control console for 50-megawatt wind tunnel testing. The technicians work in the Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Flight Control Division, Air Force Systems Command

Facility operators Earl Sine and Joe Manson and CPT Ray Pope (left to ...

The original finding aid described this photograph as: Base: Patterson Air Force Base State: Ohio (OH) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Pub... More

First LT. Charles J. Duch and AMN Ray Romero from the 474th Tactical Fighter Wing, Nellis Air Force Base, Nevada, experiments with a PRC-77 Army Field Radio for Combat Quick Turn Around Debriefing purposes, during exercise Coronet Wrangler

First LT. Charles J. Duch and AMN Ray Romero from the 474th Tactical F...

The original finding aid described this photograph as: Subject Operation/Series: CORONET WRANGLER Base: Raf Bentwaters Country: England / Great Britain (ENG) Scene Camera Operator: SSGT Jose Lopez, Jr. Rel... More

Jonathan Motzfelb, left, leader of the Greenland Home Rule Council, and Ray Burston, a press attache from the US Embassy in Copenhagen, Denmark, discuss an upcoming musk oxen relocation operation with a US Air Force officer

Jonathan Motzfelb, left, leader of the Greenland Home Rule Council, an...

The original finding aid described this photograph as: Base: Sondrestrom Air Base Country: Greenland (GRL) Scene Camera Operator: Tsgt Jose Hernandez Release Status: Released to Public Combined Military Ser... More

Sergeant (SGT) Ray Hurmon receives a message in the control center during a simulated chemical attack in support of Exercise CORONET STROKE'88.  The objectives of the exercise are to establish and maintain a netted tactical air control system, set up a composite air surveillance system, and control sorties flown by various aircraft to test their combat capabilities under difficult field conditions.  CORONET STROKE'88 represents the largest single-service netting of tactical communication in Air Force history

Sergeant (SGT) Ray Hurmon receives a message in the control center dur...

The original finding aid described this photograph as: Base: Moody Air Force Base State: Georgia (GA) Country: United States Of America (USA) Scene Camera Operator: AMN Kelvin Davis Release Status: Release... More

Ray Brown, an employee of APUTCO, sits on an all-terrain vehicle as he supervises the offloading of a fuel barge during Cool Barge '88. Cool Barge operations, through which remote government sites in Alaska are resupplied, are managed by the Air Force's Water Port Logistics Office in Seattle. The actual delivery of supplies is handled by APUTCO, a civilian contractor

Ray Brown, an employee of APUTCO, sits on an all-terrain vehicle as he...

The original finding aid described this photograph as: Subject Operation/Series: COOL BARGE '88 Base: Point Barrow State: Alaska (AK) Country: United States Of America (USA) Scene Camera Operator: MSGT. Ed... More

Artwork: "Colorado Air Guard - 'World Champs'". Artist: David W. Ray, US Air Force Art Collection

Artwork: "Colorado Air Guard - 'World Champs'". Artist: David W. Ray, ...

The original finding aid described this photograph as: Country: Unknown Scene Camera Operator: Unknown Release Status: Released to Public Combined Military Service Digital Photographic Files

STAFF SGT. Ray Bolinger (left) of the 62nd Combat Control Squadron, McChord Air Force Base, Wash., helping teammate STAFF SGT. Manny Marquez establish radio contact during the Rodeo 92 drop zone establishment competition

STAFF SGT. Ray Bolinger (left) of the 62nd Combat Control Squadron, Mc...

The original finding aid described this photograph as: Subject Operation/Series: RODEO 92 Base: Pope Air Force Base State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator:... More

SSGT Ray Bolinger of the 62nd Combat Control Squadron, McChord Air Force Base, Wash., assisting teammate SSGT Nanny Marques (wearing helmet) to another competition area duirng RODEO 92

SSGT Ray Bolinger of the 62nd Combat Control Squadron, McChord Air For...

The original finding aid described this photograph as: Subject Operation/Series: RODEO 92 Base: Pope Air Force Base State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator:... More

CPT Ray Romero, KC-135 Stratotanker navigator from the 93rd Air Refueling Squadron, Fairchild Air Force Base, Washington, at his station during air-to-air refueling operations. The 93rd ARS is participating in the Operational Readiness Inspection (ORI), which tests a unit's ability to operate in a simulated wartime environment

CPT Ray Romero, KC-135 Stratotanker navigator from the 93rd Air Refuel...

The original finding aid described this photograph as: Subject Operation/Series: CRISIS REACH 95-02NORTHERN PIKE Base: Malstrom Air Force Base State: Montana (MT) Country: United States Of America (USA) Sc... More

US Air Force Technical Sergeant James Keiffer (top, pointing) and USAF SENIOR AIRMAN Ray Fought, 235th Air Traffic Control Flight use a Hungarian/English translation book to make conversation with a group of Hungarian soldiers. Air Traffic Controllers from the 60th Operations Support Squadron (OSS), Travis Air Force Base, California, and the 30th OSS, McGuire Air Force Base, New Jersey, work alongside Hungarian controllers in the air traffic control tower at Taszar Air Force Base, Hungary

US Air Force Technical Sergeant James Keiffer (top, pointing) and USAF...

The original finding aid described this photograph as: Base: Taszar Air Base Country: Hungary (HUN) Scene Camera Operator: MSGT Rose Reynolds, USAF Release Status: Released to Public Combined Military Servi... More

MASTER Sergeant Ray Golden out of Davis Monthan Air Force Base, Arizona, pulls tape from the tube for assembly of an aircraft engagement barrier, during Air Expeditionary Force IV in support of Operation SOUTHERN WATCH. SOUTHERN WATCH enforces the United Nations Security Council Resolution 688 that establishes a no-fly zone over Southern Iraq below the 32nd parallel. The tape is part of a series of components in an aircraft arresting system used to stop an aircraft by absorbing its momentum in landing or aborted takeoff

MASTER Sergeant Ray Golden out of Davis Monthan Air Force Base, Arizon...

The original finding aid described this photograph as: Subject Operation/Series: SOUTHERN WATCH Base: Doha Country: Qatar (QAT) Scene Camera Operator: SRA Shonna Ridings, USAF Release Status: Released to P... More

Aircraft Commander LCOL Ray R. Phillips, Commander of the 7th Airlift Squadron, 62nd Aircraft Generation Squadron, McChord Air Force Base, Washington, sits in the cockpit of the C-141B Starlifter and conducts a preflight inspection. LCOL Phillips and the C-141B is deployed to support the joint, U.S. Armed Forces and New Zealand Defense Force, military operation which provides logistic support to the U.S. National Science Foundation's Program on Antarctica

Aircraft Commander LCOL Ray R. Phillips, Commander of the 7th Airlift ...

The original finding aid described this photograph as: Subject Operation/Series: DEEP FREEZE Base: Christchurch State: Canterbury Country: New Zealand (NZL) Scene Camera Operator: SRA Richard Kaminski Rel... More

US Air Force (USAF) STAFF Sergeant (SSGT) Ray Scott, an Avionics Journeyman and SSGT Brian Rebo, an Environmental Control Systems (ECS) Journeyman, both assigned to the 8th Fighter Squadron (FS), 49th Fighter Wing (FW), Holloman Air Force Base (AFB), New Mexico, stand-by as their F-117 Nighthawk Fighters depart Ahmed Al Jaber Air Base, Kuwait, in support of Operation SOUTHERN WATCH 1998

US Air Force (USAF) STAFF Sergeant (SSGT) Ray Scott, an Avionics Journ...

The original finding aid described this photograph as: Subject Operation/Series: SOUTHERN WATCH 1998 Base: Ahmed Al Jaber Air Base State: Al Ahmadi Country: Kuwait (KWT) Scene Major Command Shown: ACC Sce... More

Acting Secretary of the Air Force F. Whitten Peters visited Luke Air Force Base, Arizona for a better understanding of the issues involved in the renewal of the Barry M. Goldwater range. F. Whitten Peters goes through the breakfast line at the Ray V. Hensman dining facility

Acting Secretary of the Air Force F. Whitten Peters visited Luke Air F...

The original finding aid described this photograph as: Base: Luke Air Force Base State: Arizona (AZ) Country: United States Of America (USA) Scene Camera Operator: SRA Andrew D. Jacobus, USAF Release Statu... More

Acting Secretary of the Air Force, F. Whitten Peters, visited Luke Air Force Base, Arizona for a better understanding of the issues involved in the renewal of the Barry M. Goldwater range. Here, F. Whitten Peters discusses issues with senior enlisted Luke members during breakfast at the Ray V. Hensman dining facility

Acting Secretary of the Air Force, F. Whitten Peters, visited Luke Air...

The original finding aid described this photograph as: Base: Luke Air Force Base State: Arizona (AZ) Country: United States Of America (USA) Scene Camera Operator: SRA Andrew D. Jacobus, USAF Release Statu... More

Suffolk County, England. A wide angle view of the temporary entry control point at Royal Air Force (RAF) Mildenhall during Threat Condition Bravo as USAF AIRMAN First Class (A1C) Ray Hynes, from the 100th Security Forces Squadron and AIRMAN First Class (A1C) Fred Winchell a Security Forces augmentee, assigned to the 100th Communication identification cards and vehicle registration. Security has been increased in response to terrorist attacks in Africa and the United States Retaliation to those attacks

Suffolk County, England. A wide angle view of the temporary entry cont...

The original finding aid described this photograph as: Base: Raf Mildenhall Country: Great Britain / England (GBR) Scene Camera Operator: SSGT Randy Mallard Release Status: Released to Public Combined Milit... More

Mr. Terry Ray Reeves, Instructor Loadmaster, 97th Operations Support Squadron demonstrates the proper procedures for securing a High-Mobility Multipurpose Wheeled Vehicle (HMMWV) inside a C-5 Galaxy aircraft to a group of loadmaster trainees at Altus Air Force Base, Oklahoma

Mr. Terry Ray Reeves, Instructor Loadmaster, 97th Operations Support S...

The original finding aid described this photograph as: Base: Altus Air Force Base State: Oklahoma (OK) Country: United States Of America (USA) Scene Camera Operator: AIC Jennie Brown, USAF Release Status: ... More

USAF SENIOR AIRMAN Ray Carter 41st Airlift Squadron, STAFF Sergeant Thomas Mazzone, 2nd Airlift Squadron, Loadmaster; Flight Nurse USAF Captain Dawn Shanks, 43rd Aeromedical Evacuation Squadron, and STAFF Sergeant Shannon McBee, 43rd Aeromedical Evacuation Squadron listen to Secretary of the Air Force (SECAF), The Honorable F. Whitten Peters, inside the cargo bay of a C-130E Hercules aircraft, configuration for medical evacuation at Pope AFB, North Carolina. USAF Colonel Steve Acuff, Vice Commander of the 43rd Airlift Wing is standing next to SECAF Peters

USAF SENIOR AIRMAN Ray Carter 41st Airlift Squadron, STAFF Sergeant Th...

The original finding aid described this photograph as: Base: Pope Air Force Base State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: Dave Davenport, USAF Release Statu... More

US Air Force STAFF Sergeant Audrey Ray (left), 43rd Aeromedical Evacuation Squadron (AES) administrator, holds a chart while US Air Force Colonel G. Vaden Blackwood (center), Commander, a 43rd AES, explains the sequence of events normally occurring during an aeromedical evacuation to US Air Force General Charles T. Robertson, Jr. (right) Commander, TRANSCOM/Air Mobility Squadron, during GEN Robertson's visit to Pope Air Force Base, North Carolina

US Air Force STAFF Sergeant Audrey Ray (left), 43rd Aeromedical Evacua...

The original finding aid described this photograph as: Base: Pope Air Force Base State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: Dave Davenport Release Status: Rel... More

US Air Force Technical Sergeant (TSGT) Arthur Ray Madrid, 372nd Training Squadron, Detachment 13, demonstrated to US Air Force AIRMAN First Class Jonathan McKeon, how to take hold of the stick in the F-15C electrical power systems trainer. TSGT Madrid is the winner of the 1998 Michael J. Collins award. The award is given to the individual whose behind the scene efforts raise the level of field training, and contribute the most to the detachment

US Air Force Technical Sergeant (TSGT) Arthur Ray Madrid, 372nd Traini...

The original finding aid described this photograph as: Base: Las Vegas State: Nevada (NV) Country: United States Of America (USA) Scene Camera Operator: SSGT Norma Martinez-Galvan, USAF Release Status: Rel... More

The 119th Fighter Wing F-16 Fighting Falcon aircraft crewchief US Air Force Technical Sergeant Ray Aberle, checks a panel "his" jet. The North Dakota Air National Guard accomplished a milestone in Nov 1998, when the unit flew over 40,000 hours in the jets without a Class-A accident

The 119th Fighter Wing F-16 Fighting Falcon aircraft crewchief US Air ...

The original finding aid described this photograph as: Base: Fargo State: North Dakota (ND) Country: United States Of America (USA) Scene Camera Operator: SMSGT Paula K. Johnson, USAF Release Status: Relea... More

The quick thinking action of US Air Force Technical Sergeant Gary Staggs (Left) and MASTER Sergeant Paul McCarthy and other involved, helped to save the life of Ray McKinney (Center) who survived a 10,000-megawatt lightning strike that hit this tree and surged through him

The quick thinking action of US Air Force Technical Sergeant Gary Stag...

The original finding aid described this photograph as: Base: Kirtland Air Force Base State: New Mexico (NM) Country: United States Of America (USA) Scene Camera Operator: MSGT Dave Nolan, USAF Release Stat... More

U.S. Air Force Vehicle Operations SPECIALIST, STAFF Sergeant Kyle Langford (Left), reaches to help Boom Operator SSGT Ray Ouellette unload a KC-135 Stratotanker at Moron Air Base, Spain, on March 21st, 1999. SSGT Langford is assigned to the 92nd Transportation Squadron, Fairchild Air Force Base, Washington, and SSGT Ouellette is assigned to the 911th (ARS) Air Refueling Squadron, Grandforks Air Force Base, North Dakota are deployed to Moron AB, Spain, in support of Joint Task Force Noble Anvil. This image was shot through the Starlight Night Vision Lens System

U.S. Air Force Vehicle Operations SPECIALIST, STAFF Sergeant Kyle Lang...

The original finding aid described this photograph as: Subject Operation/Series: NOBLE ANVIL Base: Moron Air Base State: Sevilla Country: Spain (ESP) Scene Camera Operator: SRA Stan Parker, USAF Release S... More

US Air Force STAFF Sergeant Ray Ouellette (Left), a KC-135 Stratotanker Boom Operator with the 911th Aerial Refueling Squadron, Grand Forks Air Force Base, North Dakota, along with Captain Steve Stoner, a KC-135 pilot, also assigned to the 911 ARS, inprocess while deployed to Moron Air Base, Spain. This mission is in direct support of Joint Task Force Noble Anvil

US Air Force STAFF Sergeant Ray Ouellette (Left), a KC-135 Stratotanke...

The original finding aid described this photograph as: Subject Operation/Series: NOBLE ANVIL Base: Moron Air Base State: Sevilla Country: Spain (ESP) Scene Camera Operator: SSGT Ken Bergmann, USAF Release... More

US Army Lieutenant General George A. Crocker, Commander, I Corps and Fort Lewis, Washington, and his wife greet US Army General Dennis J. Reimer, CHIEF of STAFF, US Army, on his arrival to McChord Air Force Base, Washington, prior to a visit to Fort Lewis, Washington. US Army Colonel Ray Johns, Wing Commander, McChord AFB, WA, (far right), is also on hand to welcome the Reimers

US Army Lieutenant General George A. Crocker, Commander, I Corps and F...

The original finding aid described this photograph as: Base: Mcchord Air Force Base State: Washington (WA) Country: United States Of America (USA) Scene Camera Operator: Dean Asheim, USA CIV. Release Statu... More

US Army Lieutenant General Commander, I Corps and Fort Lewis, Washington, and Mrs. George A. Crocker, and Colonel Ray Johns, Wing Commander, McChord Air Force Base, Washington, salute US Army General Dennis J. Reimer, CHIEF of STAFF, US Army, on his departure from McChord Air Force Base, Washington, following a visit to Fort Lewis, Washington

US Army Lieutenant General Commander, I Corps and Fort Lewis, Washingt...

The original finding aid described this photograph as: Base: Mcchord Air Force Base State: Washington (WA) Country: United States Of America (USA) Scene Camera Operator: Dean Asheim, USA CIV. Release Statu... More

US Air Force General Charles Robertson, (Right, foreground) Commander, Air Mobility Command, gives his congratulations as he presents the D. Ray Hardin Air Traffic Control Facility of the Year award to Captain Doug Ware, 43rd Operations Support Squadron, Airfield Operations Flight Commander, on behalf of the Pope Air Traffic Control Tower STAFF. Dozens of 43rd OSS members, along with several 82nd Airborne Division paratroopers from Ft. Bragg, NC, were on hand to witness the presentation on March 19th 2000

US Air Force General Charles Robertson, (Right, foreground) Commander,...

The original finding aid described this photograph as: Base: Pope Air Force Base State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: Dave Davenport, USAF Civilian Rele... More

Medium shot, high angle, Captain Ray Robinsion, USAF, Pilot and First Lieutenant Mike Arndt, USAF, Navigator, 6th Airlift Squadron, McGuire Air Force Base, New Jersey, give a final briefing, while others look on, to Jumpmasters from the 82nd Airborne Division, Fort Bragg, North Carolina. The briefing gives the Jumpmasters the latest conditions for their mission to be inserted onto the drop zone on Fort Polk, LA. The exercise, called Large Package Week involves the airdropping of 1200nd paratroopers from the 82nd Airborne and their heavy equipment onto the drop zone. Large Package Week is a quarterly training exercise designed to build cohesiveness between the 82nd Airborne and Air ...

Medium shot, high angle, Captain Ray Robinsion, USAF, Pilot and First ...

The original finding aid described this photograph as: [Complete] Scene Caption: Medium shot, high angle, Captain Ray Robinsion, USAF, Pilot and First Lieutenant Mike Arndt, USAF, Navigator, 6th Airlift Squad... More

A close up front view of a US Air Force B-1B Lancer aircraft from the 28th Bomb Squadron, Dyess AFB, Texas as USAF AIRMAN first class Darryl Ray, crew chief, run through a before taxi checklist with the cockpit crew aboard the aircraft. From AIRMAN Magazine, August 2000 article "One Hot Bomber."

A close up front view of a US Air Force B-1B Lancer aircraft from the ...

The original finding aid described this photograph as: Base: Dyess Air Force Base State: Texas (TX) Country: United States Of America (USA) Scene Camera Operator: TSGT Lance Cheung Release Status: Released... More

US Air Force STAFF Sergeant Ray Bard, Vehicle Maintenance Mechanic, 603rd Air Control Squadron, Aviano Air Base, Italy, sews camouflage netting together. The 603rd is deployed to Bovbjerg, Denmark, in support of an annual Tactical Fighter Weaponry exercise "TFW" and a NATO Air Meet. TFW and NATO Air Meet are multinational exercises designed to practice and improve tactical capabilities in a combine training environment

US Air Force STAFF Sergeant Ray Bard, Vehicle Maintenance Mechanic, 60...

The original finding aid described this photograph as: Subject Operation/Series: TACTICAL FIGHTER WEAPONRYNATO AIR MEET Base: Bovbjerg Country: Denmark (DNK) Scene Camera Operator: SRA Delia A. Castillo, US... More

Dr. Nguyen Thi Hoi Vice President (Right shaking hands), of the Viet Nam Red Cross, accepts a water purification system from Mr. Charles A. Ray (Left shaking hands), Consul General of the United States of America at Tan Son Nhat, Viet Nam, as (Left to right behind Ray) US Air Force Captain Barry Barnes , STAFF Sergeant David Bivens and MASTER Sergeant Robert Parris, of the 517th Airlift Squadron, Elemendorf Air Force Base, Alaska, look on. (sub-standard)

Dr. Nguyen Thi Hoi Vice President (Right shaking hands), of the Viet N...

The original finding aid described this photograph as: Base: Tan Son Nhat Country: Viet Nam (VNM) Scene Camera Operator: TSGT Tina Williams, USAF Release Status: Released to Public Combined Military Service... More

Members of the Viet Nam Red Cross led by Dr Nguyen Thi Hoi (Left), Vice President of the Viet Nam Red Cross and Mr. Charles A. Ray (Center), Consul General of the United States of America, come out to greet crew members of the US Air Force C-130 Hercules carrying a water purification system (C-130, it's crew and the purification unit not shown) into Tan Son Nhat, Viet Nam

Members of the Viet Nam Red Cross led by Dr Nguyen Thi Hoi (Left), Vic...

The original finding aid described this photograph as: Base: Tan Son Nhat Country: Viet Nam (VNM) Scene Camera Operator: TSGT Tina Williams, USAF Release Status: Released to Public Combined Military Service... More

In the Spacecraft Assembly & Encapsulation Facility -2, workers help guide the <a href="http://mars.jpl.nasa.gov/2001/">2001 Mars Odyssey Orbiter </a> to a workstand (left). The spacecraft carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0099

In the Spacecraft Assembly & Encapsulation Facility -2, workers help g...

In the Spacecraft Assembly & Encapsulation Facility -2, workers help guide the http://mars.jpl.nasa.gov/2001/">2001 Mars Odyssey Orbiter </a> to a workstand (left). The spacecraft carries three science instrume... More

In the Spacecraft Assembly & Encapsulation Facility -2, the 2001 <a href="http://mars.jpl.nasa.gov/2001/">Mars Odyssey Orbiter </a>is lifted from a platform by an overhead crane while workers help guide it. The Odyssey is being moved to a workstand in the SAEF-2. The spacecraft carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0098

In the Spacecraft Assembly & Encapsulation Facility -2, the 2001 <a hr...

In the Spacecraft Assembly & Encapsulation Facility -2, the 2001 http://mars.jpl.nasa.gov/2001/">Mars Odyssey Orbiter </a>is lifted from a platform by an overhead crane while workers help guide it. The Odyssey ... More

The <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter </a>comes to rest on a workstand in the Spacecraft Assembly & Encapsulation Facility -2. Workers check the spacecraft’s position. The Mars Odyssey Orbiter carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0102

The <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter <...

The <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter </a>comes to rest on a workstand in the Spacecraft Assembly & Encapsulation Facility -2. Workers check the spacecraft’s position. The Mars Od... More

In the Spacecraft Assembly & Encapsulation Facility -2, workers help guide the <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter </a>as it is lowered to a workstand. The Mars Odyssey Orbiter carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0101

In the Spacecraft Assembly & Encapsulation Facility -2, workers help g...

In the Spacecraft Assembly & Encapsulation Facility -2, workers help guide the <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter </a>as it is lowered to a workstand. The Mars Odyssey Orbiter carr... More

The <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter</a> is safely placed on a workstand in the Spacecraft Assembly & Encapsulation Facility -2. The Mars Odyssey Orbiter carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0103

The <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter</...

The <a href=http://mars.jpl.nasa.gov/2001/>2001 Mars Odyssey Orbiter</a> is safely placed on a workstand in the Spacecraft Assembly & Encapsulation Facility -2. The Mars Odyssey Orbiter carries three science in... More

In the Spacecraft Assembly & Encapsulation Facility -2, workers check the movement of the <a href="http://mars.jpl.nasa.gov/2001/">2001 Mars Odyssey Orbiter </a> as it is carried to the workstand at right. The circular object facing forward on the spacecraft is a high-gain antenna. On the right side is the rectangular solar array assembly. The Mars Odyssey Orbiter carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0100

In the Spacecraft Assembly & Encapsulation Facility -2, workers check ...

In the Spacecraft Assembly & Encapsulation Facility -2, workers check the movement of the http://mars.jpl.nasa.gov/2001/">2001 Mars Odyssey Orbiter </a> as it is carried to the workstand at right. The circular ... More

Workers in the Spacecraft Assembly & Encapsulation Facility -2 make a visual check of the front side of the opened solar array panels from the 2001 Mars Odyssey Orbiter. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0159

Workers in the Spacecraft Assembly & Encapsulation Facility -2 make a ...

Workers in the Spacecraft Assembly & Encapsulation Facility -2 make a visual check of the front side of the opened solar array panels from the 2001 Mars Odyssey Orbiter. The Mars Odyssey carries three science i... More

Workers in the Spacecraft Assembly & Encapsulation Facility -2 help guide the solar array just removed from the 2001 Mars Odyssey Orbiter toward a nearby workstand. This will give workers access to other components of the spacecraft and allow inspection of the array. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0122

Workers in the Spacecraft Assembly & Encapsulation Facility -2 help gu...

Workers in the Spacecraft Assembly & Encapsulation Facility -2 help guide the solar array just removed from the 2001 Mars Odyssey Orbiter toward a nearby workstand. This will give workers access to other compon... More

Workers in the Spacecraft Assembly & Encapsulation Facility -2 take a close look at the back side of the opened solar array panels from the 2001 Mars Odyssey Orbiter. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0160

Workers in the Spacecraft Assembly & Encapsulation Facility -2 take a ...

Workers in the Spacecraft Assembly & Encapsulation Facility -2 take a close look at the back side of the opened solar array panels from the 2001 Mars Odyssey Orbiter. The Mars Odyssey carries three science inst... More

In the Spacecraft Assembly & Encapsulation Facility -2, workers oversee removal of the solar array on the 2001 Mars Odyssey Orbiter to a nearby workstand. This will give workers access to other components of the spacecraft and allow inspection of the array. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0121

In the Spacecraft Assembly & Encapsulation Facility -2, workers overse...

In the Spacecraft Assembly & Encapsulation Facility -2, workers oversee removal of the solar array on the 2001 Mars Odyssey Orbiter to a nearby workstand. This will give workers access to other components of th... More

In the Spacecraft Assembly & Encapsulation Facility -2, workers help guide the solar array from the 2001 Mars Odyssey Orbiter onto a workstand. This will give workers access to other components of the spacecraft and allow inspection of the array. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0124

In the Spacecraft Assembly & Encapsulation Facility -2, workers help g...

In the Spacecraft Assembly & Encapsulation Facility -2, workers help guide the solar array from the 2001 Mars Odyssey Orbiter onto a workstand. This will give workers access to other components of the spacecraf... More

In the Spacecraft Assembly & Encapsulation Facility -2, the solar array from the 2001 Mars Odyssey Orbiter is moved toward a workstand. This will give workers access to other components of the spacecraft and allow inspection of the array. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0123

In the Spacecraft Assembly & Encapsulation Facility -2, the solar arra...

In the Spacecraft Assembly & Encapsulation Facility -2, the solar array from the 2001 Mars Odyssey Orbiter is moved toward a workstand. This will give workers access to other components of the spacecraft and al... More

Workers in the Spacecraft Assembly & Encapsulation Facility -2 open the solar array panels from the 2001 Mars Odyssey Orbiter, allowing inspection of the panels and giving them access to other components. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0158

Workers in the Spacecraft Assembly & Encapsulation Facility -2 open th...

Workers in the Spacecraft Assembly & Encapsulation Facility -2 open the solar array panels from the 2001 Mars Odyssey Orbiter, allowing inspection of the panels and giving them access to other components. The M... More

In the Spacecraft Assembly & Encapsulation Facility -2, workers attach an overhead crane to the solar array on the 2001 Mars Odyssey Orbiter to move the component to a workstand. This will give workers access to other components of the spacecraft and allow inspection of the array. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0120

In the Spacecraft Assembly & Encapsulation Facility -2, workers attach...

In the Spacecraft Assembly & Encapsulation Facility -2, workers attach an overhead crane to the solar array on the 2001 Mars Odyssey Orbiter to move the component to a workstand. This will give workers access t... More

US Air Force STAFF Sergeant Ray Chamberlain (center) of the 48th Component Repair Squadron, 48th Fighter Wing, Royal Air Force Lakenheath, United Kingdom, and US Air Force SENIOR AIRMAN Joshua Lucier (left) along with US Air Force AIRMAN First Class Patrick Platt, on temporary duty from the 3rd Component Repair Squadron Elmendorf Air Force Base, Alaska, prepare a Pratt and Whitney F100-PW-220 engine for fan duct removal. (Duplicate image, see also DF-SD-01-08487 or search 010122-F-4177H-001)

US Air Force STAFF Sergeant Ray Chamberlain (center) of the 48th Compo...

The original finding aid described this photograph as: Base: Raf Lakenheath State: East Anglia Country: England / Great Britain (ENG) Scene Camera Operator: A1C James Harper, USAF Release Status: Released ... More

US Air Force STAFF Sergeant Ray Chamberlain (center) from the 48th Component Repair Squadron, 48th Fighter Wing, Royal Air Force Lakenheath, United Kingdom, and USAF SENIOR AIRMAN Joshua Lucier (left) along with USAF AIRMAN First Class Patrick Platt, on temporary duty from the 3rd Component Repair Squadron Elmendorf, Alaska, United States, Prepare a Pratt and Whitney F100-PW-220 engine for fan duct removal. (Duplicate image, see also DF-SD-02-02640 or search 010122-F-4177H-001)

US Air Force STAFF Sergeant Ray Chamberlain (center) from the 48th Com...

The original finding aid described this photograph as: Base: Raf Lakenheath State: East Anglia Country: England / Great Britain (ENG) Scene Camera Operator: A1C James Harper, USAF Release Status: Released ... More

US Air Force STAFF Sergeant Ray Chamberlain from the 48th Component Repair Squadron, 48th Fighter Wing, Royal Air Force Lakenheath, United Kingdom, and USAF AIRMAN First Class Patrick Platt, on temporary duty from the 3rd Component Repair Squadron Elmendorf Air Force Base, Alaska, prepares the gearbox of a Pratt and Whitney F100-PW-220 engine for removal. (Duplicate image, see also DF-SD-02-02644 or search 010122-F-4177H-006)

US Air Force STAFF Sergeant Ray Chamberlain from the 48th Component Re...

The original finding aid described this photograph as: Base: Raf Lakenheath State: East Anglia Country: England / Great Britain (ENG) Scene Camera Operator: A1C James Harper, USAF Release Status: Released ... More

US Air Force STAFF Sergeant Ray Chamberlain, from the 48th Component Repair Squadron, 48th Fighter Wing, Royal Air Force Lakenheath, United Kingdom, and US Air Force AIRMAN First Class Patrick Platt, on temporary duty from the 3rd Component Repair Squadron, Elmendorf Air Force Base, Alaska, Prepares the gearbox of a Pratt and Whitney F100-PW-220 engine for removal. (Duplicate image, see also DF-SD-01-08492 or search 010122-F-4177H-006)

US Air Force STAFF Sergeant Ray Chamberlain, from the 48th Component R...

The original finding aid described this photograph as: Base: Raf Lakenheath State: East Anglia Country: England / Great Britain (ENG) Scene Camera Operator: A1C James Harper, USAF Release Status: Released ... More

Technicians guide The Gamma Ray Spectrometer (GRS); into place to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0193

Technicians guide The Gamma Ray Spectrometer (GRS); into place to be i...

Technicians guide The Gamma Ray Spectrometer (GRS); into place to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three science... More

Technicians check out the Gamma Ray Spectrometer (GRS) before it is installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility II (SAEF II) .; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0188

Technicians check out the Gamma Ray Spectrometer (GRS) before it is in...

Technicians check out the Gamma Ray Spectrometer (GRS) before it is installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility II (SAEF II) .; The orbiter will carry three scien... More

Two technicians involved with the installation of the Gamma Ray Spectrometer (GRS) on the Mars Odyssey Orbiter pose in front of the spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0195

Two technicians involved with the installation of the Gamma Ray Spectr...

Two technicians involved with the installation of the Gamma Ray Spectrometer (GRS) on the Mars Odyssey Orbiter pose in front of the spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; ... More

Technicians examine the Gamma Ray Spectrometer (GRS) before it is moved to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility II (SAEF II).; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0189

Technicians examine the Gamma Ray Spectrometer (GRS) before it is move...

Technicians examine the Gamma Ray Spectrometer (GRS) before it is moved to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility II (SAEF II).; The orbiter will carry th... More

An overhead crane moves The Gamma Ray Spectrometer (GRS) into place to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0191

An overhead crane moves The Gamma Ray Spectrometer (GRS) into place to...

An overhead crane moves The Gamma Ray Spectrometer (GRS) into place to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three sc... More

Technicians guide The Gamma Ray Spectrometer (GRS)into place to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0192

Technicians guide The Gamma Ray Spectrometer (GRS)into place to be ins...

Technicians guide The Gamma Ray Spectrometer (GRS)into place to be installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).The orbiter will carry three science ins... More

The Gamma Ray Spectrometer (GRS) is installed by technicians on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0194

The Gamma Ray Spectrometer (GRS) is installed by technicians on the Ma...

The Gamma Ray Spectrometer (GRS) is installed by technicians on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2).; The orbiter will carry three science instruments: the ... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), workers attach a crane to the Gamma Ray Spectrometer (GRS); to move it into place to be installed on the Mars Odyssey Orbiter.; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0190

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), work...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), workers attach a crane to the Gamma Ray Spectrometer (GRS); to move it into place to be installed on the Mars Odyssey Orbiter.; The orbiter will... More

At a work bench in the Spacecraft Assembly and Encapsulation Facility 2, workers test the Thermal Emission Imaging System (THEMIS) before attaching to the 2001 Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0259

At a work bench in the Spacecraft Assembly and Encapsulation Facility ...

At a work bench in the Spacecraft Assembly and Encapsulation Facility 2, workers test the Thermal Emission Imaging System (THEMIS) before attaching to the 2001 Mars Odyssey Orbiter. THEMIS will map the mineralo... More

In the Spacecraft Assembly and Encapsulation Facility 2, an overhead crane lifts and moves the Thermal Emission Imaging System (THEMIS) toward the 2001 Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0260

In the Spacecraft Assembly and Encapsulation Facility 2, an overhead c...

In the Spacecraft Assembly and Encapsulation Facility 2, an overhead crane lifts and moves the Thermal Emission Imaging System (THEMIS) toward the 2001 Mars Odyssey Orbiter. THEMIS will map the mineralogy and m... More

Workers in the Spacecraft Assembly and Encapsulation Facility 2 check the placement of the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0263

Workers in the Spacecraft Assembly and Encapsulation Facility 2 check ...

Workers in the Spacecraft Assembly and Encapsulation Facility 2 check the placement of the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of ... More

In the Spacecraft Assembly and Encapsulation Facility 2, workers test the Thermal Emission Imaging System (THEMIS) before attaching to the 2001 Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0258

In the Spacecraft Assembly and Encapsulation Facility 2, workers test ...

In the Spacecraft Assembly and Encapsulation Facility 2, workers test the Thermal Emission Imaging System (THEMIS) before attaching to the 2001 Mars Odyssey Orbiter. THEMIS will map the mineralogy and morpholog... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), workers check the Thermal Emission Imaging System (THEMIS) before attaching to the 2001 Mars Odyssey Orbiter (background). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0257

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), work...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), workers check the Thermal Emission Imaging System (THEMIS) before attaching to the 2001 Mars Odyssey Orbiter (background). THEMIS will map the m... More

In the Spacecraft Assembly and Encapsulation Facility 2, workers help put the Thermal Emission Imaging System (THEMIS) in its place on the Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0262

In the Spacecraft Assembly and Encapsulation Facility 2, workers help ...

In the Spacecraft Assembly and Encapsulation Facility 2, workers help put the Thermal Emission Imaging System (THEMIS) in its place on the Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of ... More

Workers in the Spacecraft Assembly and Encapsulation Facility 2 adjust the placement of the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0264

Workers in the Spacecraft Assembly and Encapsulation Facility 2 adjust...

Workers in the Spacecraft Assembly and Encapsulation Facility 2 adjust the placement of the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter. THEMIS will map the mineralogy and morphology of... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), the Thermal Emission Imaging System (THEMIS), left, is moved toward the Mars Odyssey Orbiter, at right. THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0261

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), the ...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF 2), the Thermal Emission Imaging System (THEMIS), left, is moved toward the Mars Odyssey Orbiter, at right. THEMIS will map the mineralogy and morph... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers at right attach reflective panels to the Mars Odyssey solar arrays during illumination testing. The Mars Orbiter is at left on a workstand. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0368

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), work...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers at right attach reflective panels to the Mars Odyssey solar arrays during illumination testing. The Mars Orbiter is at left on a worksta... More

Workers set up illumination testing for the Mars Odyssey solar panels. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0367

Workers set up illumination testing for the Mars Odyssey solar panels....

Workers set up illumination testing for the Mars Odyssey solar panels. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (... More

Workers in the in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) attach logos to the Mars Odyssey solar panels, which are undergoing illumination testing. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0366

Workers in the in the Spacecraft Assembly and Encapsulation Facility 2...

Workers in the in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) attach logos to the Mars Odyssey solar panels, which are undergoing illumination testing. The orbiter will carry three science ins... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), the 2001 Mars Odyssey Orbiter sits on a workstand (left) while workers at right prepare its solar arrays for illumination testing. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0371

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), the ...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), the 2001 Mars Odyssey Orbiter sits on a workstand (left) while workers at right prepare its solar arrays for illumination testing. The orbiter w... More

A worker (left) records data during illumination testing on the Mars Odyssey solar arrays he stands behind. The 2001 Mars Odyssey Orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0370

A worker (left) records data during illumination testing on the Mars O...

A worker (left) records data during illumination testing on the Mars Odyssey solar arrays he stands behind. The 2001 Mars Odyssey Orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer... More

Workers attach reflective panels to the Mars Odyssey solar arrays for illumination testing. The Mars Orbiter is at left on a workstand. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0369

Workers attach reflective panels to the Mars Odyssey solar arrays for ...

Workers attach reflective panels to the Mars Odyssey solar arrays for illumination testing. The Mars Orbiter is at left on a workstand. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Sp... More

Workers in the in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) set up the Mars Odyssey solar panels for illumination testing. The orbiter will carry three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0365

Workers in the in the Spacecraft Assembly and Encapsulation Facility 2...

Workers in the in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) set up the Mars Odyssey solar panels for illumination testing. The orbiter will carry three science instruments: THEMIS, the Gamma... More

Two Russian scientists look over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0414

Two Russian scientists look over the High Energy Neutron Detector (HEN...

Two Russian scientists look over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Re... More

In the Spacecraft Assembly and Encapsulation Facility 2, a Russian scientist (SAEF-2) looks over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0413

In the Spacecraft Assembly and Encapsulation Facility 2, a Russian sci...

In the Spacecraft Assembly and Encapsulation Facility 2, a Russian scientist (SAEF-2) looks over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 20... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers prepare to remove the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0411

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), work...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers prepare to remove the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), a worker removes the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0412

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), a wo...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), a worker removes the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter. The HEN... More

Cranes on the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, lift the first stage of a Boeing Delta rocket to a vertical position. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0459

Cranes on the gantry on Launch Pad 17-A, Cape Canaveral Air Force Stat...

Cranes on the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, lift the first stage of a Boeing Delta rocket to a vertical position. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled fo... More

The first stage of a Boeing Delta rocket is in vertical position in the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0463

The first stage of a Boeing Delta rocket is in vertical position in th...

The first stage of a Boeing Delta rocket is in vertical position in the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch Apr... More

The first stage of a Boeing Delta rocket backs into position to be lifted for erection on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0456

The first stage of a Boeing Delta rocket backs into position to be lif...

The first stage of a Boeing Delta rocket backs into position to be lifted for erection on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for la... More

Cranes on the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, lift the first stage of a Boeing Delta rocket to a vertical position. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0458

Cranes on the gantry on Launch Pad 17-A, Cape Canaveral Air Force Stat...

Cranes on the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, lift the first stage of a Boeing Delta rocket to a vertical position. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled fo... More

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0455

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, C...

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey conta... More

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0457

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, C...

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey conta... More

The first stage of a Boeing Delta rocket suspended in the the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, is reflected in the pool nearby. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0465

The first stage of a Boeing Delta rocket suspended in the the gantry o...

The first stage of a Boeing Delta rocket suspended in the the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, is reflected in the pool nearby. The rocket will carry the 2001 Mars Odyssey Orbiter, s... More

The first stage of a Boeing Delta rocket is lifted vertically up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0464

The first stage of a Boeing Delta rocket is lifted vertically up the g...

The first stage of a Boeing Delta rocket is lifted vertically up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April ... More

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers maneuver the first stage of a Boeing Delta rocket into a vertical position . The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0461

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers maneuver...

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers maneuver the first stage of a Boeing Delta rocket into a vertical position . The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for laun... More

The first stage of a Boeing Delta rocket is eased into a vertical position to be lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0462

The first stage of a Boeing Delta rocket is eased into a vertical posi...

The first stage of a Boeing Delta rocket is eased into a vertical position to be lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, s... More

The first stage of a Boeing Delta rocket is lifted into place in the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0460

The first stage of a Boeing Delta rocket is lifted into place in the g...

The first stage of a Boeing Delta rocket is lifted into place in the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April ... More

A crane lifts a solid rocket booster on Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0418

A crane lifts a solid rocket booster on Launch Pad 17-A, Cape Canavera...

A crane lifts a solid rocket booster on Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey ... More

A Delta 7925 rocket on Launch Pad 17-A, Cape Canaveral Air Force Station, is being erected for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0416

A Delta 7925 rocket on Launch Pad 17-A, Cape Canaveral Air Force Stati...

A Delta 7925 rocket on Launch Pad 17-A, Cape Canaveral Air Force Station, is being erected for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: T... More

A third solid rocket booster is lifted up the gantry between two others on Launch Pad 17-A, Cape Canaveral Air Force Station. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0420

A third solid rocket booster is lifted up the gantry between two other...

A third solid rocket booster is lifted up the gantry between two others on Launch Pad 17-A, Cape Canaveral Air Force Station. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket wil... More

On Launch Pad 17-A, Cape Canaveral Air Force Station, a Delta 7925 rocket (left) waits for three additional solid rocket boosters (right) to arrive. Scheduled to launch April 7, 2001, the rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0422

On Launch Pad 17-A, Cape Canaveral Air Force Station, a Delta 7925 roc...

On Launch Pad 17-A, Cape Canaveral Air Force Station, a Delta 7925 rocket (left) waits for three additional solid rocket boosters (right) to arrive. Scheduled to launch April 7, 2001, the rocket will carry the ... More

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, watch as a third solid rocket booster is lifted up the gantry between two others. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0421

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, watch as...

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, watch as a third solid rocket booster is lifted up the gantry between two others. They will be mated with a Delta 7925 rocket for launch April 7, 20... More

Two solid rocket boosters, in the background, are lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, for stacking with a Delta 7925 rocket. The rocket, scheduled to launch April 7, 2001, will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0417

Two solid rocket boosters, in the background, are lifted up the gantry...

Two solid rocket boosters, in the background, are lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, for stacking with a Delta 7925 rocket. The rocket, scheduled to launch April 7, 2001... More

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, keep watch as a solid rocket booster is lifted in between two other SRBs suspended from the gantry. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0419

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, keep wat...

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, keep watch as a solid rocket booster is lifted in between two other SRBs suspended from the gantry. They will be mated with a Delta 7925 rocket for ... More

A piece of the fairing that will cover the Mars Odyssey Orbiter during is lifted up the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The 2001 Mars Odyssey Orbiter is scheduled for launch on a Delta rocket April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0468

A piece of the fairing that will cover the Mars Odyssey Orbiter during...

A piece of the fairing that will cover the Mars Odyssey Orbiter during is lifted up the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The 2001 Mars Odyssey Orbiter is scheduled for launch on a De... More

The first piece of the fairing that will cover the Mars Odyssey Orbiter during launch rises up the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The 2001 Mars Odyssey Orbiter is scheduled for launch on a Delta rocket April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0473

The first piece of the fairing that will cover the Mars Odyssey Orbite...

The first piece of the fairing that will cover the Mars Odyssey Orbiter during launch rises up the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The 2001 Mars Odyssey Orbiter is scheduled for lau... More

The second piece of fairing that will cover the Mars Odyssey Orbiter during launch joins the first half at the top of the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The 2001 Mars Odyssey Orbiter is scheduled for launch on a Delta rocket April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0474

The second piece of fairing that will cover the Mars Odyssey Orbiter d...

The second piece of fairing that will cover the Mars Odyssey Orbiter during launch joins the first half at the top of the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The 2001 Mars Odyssey Orbit... More

An overhead crane at Launch Pad 17-A, Cape Canaveral Air Force Station, raises part of a fairing before lifting. The fairing will cover the Mars Odyssey Orbiter during launch on a Delta rocket. The 2001 Mars Odyssey Orbiter is scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0467

An overhead crane at Launch Pad 17-A, Cape Canaveral Air Force Station...

An overhead crane at Launch Pad 17-A, Cape Canaveral Air Force Station, raises part of a fairing before lifting. The fairing will cover the Mars Odyssey Orbiter during launch on a Delta rocket. The 2001 Mars Od... More

The first piece of the fairing that will cover the Mars Odyssey Orbiter during launch is lifted up the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The second piece rests on the transporter below. The 2001 Mars Odyssey Orbiter is scheduled for launch on a Delta rocket April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0472

The first piece of the fairing that will cover the Mars Odyssey Orbite...

The first piece of the fairing that will cover the Mars Odyssey Orbiter during launch is lifted up the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station. The second piece rests on the transporter belo... More

Previous

of 3

Next