requirements, flight

96 media by topicpage 1 of 1
KENNEDY SPACE CENTER, FLA. --   In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.   In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0085

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Serv... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4238

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

3/4 FRONT VIEW OF HILLER H-23C (USA 56-2288).  USE OF THE HILLER H-23 HELICOPTER AS AN AID IN ESTABLISHING SATISFACTORY FLYING QUALITIES & REQUIREMENTS FOR VTOL AIRCRAFT.  Rotocraft Research.  NASA SP Flight Research at Ames: 57 Years of Development and Validation of Aeronautical Technology ARC-1969-A-27425

3/4 FRONT VIEW OF HILLER H-23C (USA 56-2288). USE OF THE HILLER H-23 ...

3/4 FRONT VIEW OF HILLER H-23C (USA 56-2288). USE OF THE HILLER H-23 HELICOPTER AS AN AID IN ESTABLISHING SATISFACTORY FLYING QUALITIES & REQUIREMENTS FOR VTOL AIRCRAFT. Rotocraft Research. NASA SP Flight Re... More

Apollo 4 Launch, NASA Apollo program

Apollo 4 Launch, NASA Apollo program

On November 9, 1967, Apollo 4, the first test flight of the Apollo/Saturn V space vehicle, was launched from Kennedy Space Center Launch Complex 39. This was an unmanned test flight intended to prove that the c... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is about to be offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4245

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is about to be offloaded from the Super Guppy aircraft. The la... More

Members of the 61st Tactical Airlift Squadron prepare to file flight plans after studying mission requirements in the target study room. The airmen are participating in the 314th Tactical Airlift Wing's operational readiness exercise Purple Penny

Members of the 61st Tactical Airlift Squadron prepare to file flight p...

The original finding aid described this photograph as: Subject Operation/Series: PURPLE PENNY Base: Travis Field, Savannah State: Georgia (GA) Country: United States Of America (USA) Scene Camera Operator:... More

MASTER SGT. Neil Brown, of the Military Personnel Flight, 774th Air Base Group, gives General James Jamerson, Commander of the United States Air Forces in Europe a synopsis of manning draw down requirements

MASTER SGT. Neil Brown, of the Military Personnel Flight, 774th Air Ba...

The original finding aid described this photograph as: Base: Raf Chicksands Country: England / Great Britain (ENG) Scene Camera Operator: SENIOR AIRMAN Amy Swanson Release Status: Released to Public Combine... More

KENNEDY SPACE CENTER, Fla. --  This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis’s cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle’s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA’s Space Shuttle program KSC01padig054

KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atla...

KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at it... More

This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis’s cockpit. Below Atlantis, on either side of the tail, are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle’s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA’s Space Shuttle program KSC01pp0275

This closeup reveals Space Shuttle Atlantis after rollback of the Rota...

This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides ... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP.   In the distance, at left, is Launch Pad 39A. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibra... More

KENNEDY SPACE CENTER, FLA. -  As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the driver of the front control cab can be seen.  The MLP is carrying two solid rocket boosters for engineering analysis vibration tests on the crawler and MLP.    The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves ...

KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the driver of the front control cab can be seen. The MLP is carryi... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved...

KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of ... More

KENNEDY SPACE CENTER, FLA. -  As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway.  The move is in support of engineering analysis vibration tests on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves ...

KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway. Th... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP.   The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of e... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP.   The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of e... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP.   In the distance, at left, is Launch Pad 39A.  The water on the right of the crawlerway is the Banana River.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of e... More

KENNEDY SPACE CENTER, FLA. - Carrying a set of twin solid rocket boosters, the crawler transporter slowly moves the Mobile Launcher Platform (MLP) past the NASA-KSC News Center where the U.S. flag flies daily.  The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Carrying a set of twin solid rocket boost...

KENNEDY SPACE CENTER, FLA. - Carrying a set of twin solid rocket boosters, the crawler transporter slowly moves the Mobile Launcher Platform (MLP) past the NASA-KSC News Center where the U.S. flag flies daily. ... More

KENNEDY SPACE CENTER, FLA. -  Framed between palm trees, solid rocket boosters loom above the Mobile Launcher Platform (MLP) as the crawler transporter slowly moves it along the crawlerway.  The journey is in support of engineering analysis vibration tests on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Framed between palm trees, solid rocket ...

KENNEDY SPACE CENTER, FLA. - Framed between palm trees, solid rocket boosters loom above the Mobile Launcher Platform (MLP) as the crawler transporter slowly moves it along the crawlerway. The journey is in s... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP.   The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engi... More

KENNEDY SPACE CENTER, FLA. -   The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves th...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibr... More

KENNEDY SPACE CENTER, FLA. -   The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly movin...

KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of... More

KENNEDY SPACE CENTER, FLA. -  As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway.  The move is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves ...

KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway. Th... More

KENNEDY SPACE CENTER, FLA. -  The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP.  On either side of the boosters on the horizon can be seen the two launch pads. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the...

KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of e... More

KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB).  The journey is in support of engineering analysis vibration tests on the crawler and MLP.  The water on the right of the crawlerway is the Banana River.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launc...

KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, aw... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The view reveals the river gravel surface that is 4 inches thick on the straightaway sections and 8 inches thick on curves. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analys... More

KENNEDY SPACE CENTER, FLA. -  Like candles embedded in a sculptured “cake,” the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it inches along the crawlerway at various speeds up to 1 mph in an effort to achieve vibration data gathering goals. The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Like candles embedded in a sculptured “c...

KENNEDY SPACE CENTER, FLA. - Like candles embedded in a sculptured “cake,” the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it inches along the crawlerway at various speeds... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawls away from the Vehicle Assembly Building in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawls away from the Vehicle Assembly Building in support of the seco... More

KENNEDY SPACE CENTER, FLA. -  A high-flying bird takes a closer look at the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it as it crawls toward Launch Pad 39A, in the background.  The crawler is moving along the crawlerway at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - A high-flying bird takes a closer look a...

KENNEDY SPACE CENTER, FLA. - A high-flying bird takes a closer look at the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it as it crawls toward Launch Pad 39A, in the backgr... More

KENNEDY SPACE CENTER, FLA. - Seen across the water of the Launch Complex 39 turn basin, a crawler-transporter, carrying Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted atop, crawls out of the 525-foot-tall Vehicle Assembly Building during the second engineering analysis vibration test on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Seen across the water of the Launch Compl...

KENNEDY SPACE CENTER, FLA. - Seen across the water of the Launch Complex 39 turn basin, a crawler-transporter, carrying Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted at... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawl out of the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. In the background is another MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawl out of the Vehicle Assembly Building (VAB) in support of the se... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (framed between the boosters), and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analys... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon) and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analys... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon at right; Pad 39B is at far left), and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analys... More

KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP.  From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Lau...

KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, crawl to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP.  In the background are Launch Pads 39A (right) and 39B (left).  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, crawl to the intersection in the crawlerway in support o... More

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician walks towards the intersection of the crawlerway beside a crawler-transporter moving Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, during the second engineering analysis vibration test on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A, and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician walks t...

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician walks towards the intersection of the crawlerway beside a crawler-transporter moving Mobile Launcher Platform (MLP) number 3, with a set of twin so... More

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician inspects the shoes on one of eight tracks of a crawler-transporter (CT).  The CT is moving Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted on top to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician inspect...

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician inspects the shoes on one of eight tracks of a crawler-transporter (CT). The CT is moving Mobile Launcher Platform (MLP) number 3 with a set of tw... More

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician monitors the performance of a crawler-transporter as it moves Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, to the intersection in the crawlerway during the second engineering analysis vibration test on the crawler and MLP.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A, and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician monitor...

KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician monitors the performance of a crawler-transporter as it moves Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bol... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, inches along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP.  The MLP is viewed from the KSC News Center across the turn basin.  The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, inches along the crawlerway in support of the second eng... More

KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP.  From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile L...

KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in suppo... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch away from the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch away from the Vehicle Assembly Building (VAB) in support of the ... More

Two Tugboats head out to meet the US Navy (USN) Arleigh Burke Class: (Flight II) Guided Missile Destroyer (Aegis), USS MAHAN (DDG 72) as the ship arrives in the harbor at Souda Bay, Crete, Greece for a routine port visit, while participating in Exercise FRUKUS 2005. The Exercise is a multilateral fleet training and command post exercise with France, Russia, and the United Kingdom in the eastern Atlantic Ocean. FRUKUS fosters an environment of cooperation suitable to meet future operational requirements and contingencies

Two Tugboats head out to meet the US Navy (USN) Arleigh Burke Class: (...

The original finding aid described this photograph as: Country: Zimbabwe (ZWE) Scene Camera Operator: Paul Farley, CIV Release Status: Released to Public Combined Military Service Digital Photographic Files

KENNEDY SPACE CENTER, FLA. - Dwayne Light (left), director of Florida Operations, Astrotech, assists Jim Adams, deputy project manager for NASA's Solar Terrestrial Relations Observatory (STEREO), Goddard Space Flight Center, as he cuts the ribbon to officially open the new class 10,000 clean-room enclosure at Astrotech, a payload processing facility near Kennedy Space Center. This clean-room enclosure, within the high bay at Astrotech, meets the additional stringent cleanliness requirements necessary for processing STEREO for launch.  The enclosure was designed and constructed by Astrotech to meet the spacecraft requirements provided by STEREO project management at NASA's Goddard Space Flight Center, Greenbelt, Md. STEREO consists of two spacecraft whose mission is the first to take measurements of the sun and solar wind in 3-D. Launch aboard a Boeing Delta II rocket from Launch Complex 17 on Cape Canaveral Air Force Station is scheduled to occur over the summer. Photo credit: NASA/Dimitri Gerondidakis KSC-06pd0783

KENNEDY SPACE CENTER, FLA. - Dwayne Light (left), director of Florida ...

KENNEDY SPACE CENTER, FLA. - Dwayne Light (left), director of Florida Operations, Astrotech, assists Jim Adams, deputy project manager for NASA's Solar Terrestrial Relations Observatory (STEREO), Goddard Space ... More

KENNEDY SPACE CENTER, FLA. - Dwayne Light (left), director of Florida Operations, Astrotech, and Jim Adams, deputy project manager for NASA's Solar Terrestrial Relations Observatory (STEREO), Goddard Space Flight Center, ceremonially open the doors of the new class 10,000 clean-room enclosure at Astrotech, signaling the enclosure is ready for operation.  Astrotech is a payload processing facility in Titusville, near Kennedy Space Center. This clean-room enclosure, within the high bay at Astrotech, meets the additional stringent cleanliness requirements necessary for processing STEREO for launch.  The enclosure was designed and constructed by Astrotech to meet the spacecraft requirements provided by STEREO project management at NASA's Goddard Space Flight Center, Greenbelt, Md. STEREO consists of two spacecraft whose mission is the first to take measurements of the sun and solar wind in 3-D. Launch aboard a Boeing Delta II rocket from Launch Complex 17 on Cape Canaveral Air Force Station is scheduled to occur over the summer. Photo credit: NASA/Dimitri Gerondidakis KSC-06pd0784

KENNEDY SPACE CENTER, FLA. - Dwayne Light (left), director of Florida ...

KENNEDY SPACE CENTER, FLA. - Dwayne Light (left), director of Florida Operations, Astrotech, and Jim Adams, deputy project manager for NASA's Solar Terrestrial Relations Observatory (STEREO), Goddard Space Flig... More

KENNEDY SPACE CENTER, FLA. - Jim Adams (right), deputy project manager for NASA's Solar Terrestrial Relations Observatory (STEREO), Goddard Space Flight Center, presents a certificate of appreciation to Dwayne Light, director of Florida Operations, Astrotech, a payload processing facility near Kennedy Space Center. The occasion was the ribbon-cutting for a clean-room enclosure, within the high bay at Astrotech. The enclosure meets the additional stringent cleanliness requirements necessary for processing STEREO for launch. It was designed and constructed by Astrotech to meet the spacecraft requirements provided by STEREO project management at NASA's Goddard Space Flight Center, Greenbelt, Md. STEREO consists of two spacecraft whose mission is the first to take measurements of the sun and solar wind in 3-D. Launch aboard a Boeing Delta II rocket from Launch Complex 17 on Cape Canaveral Air Force Station is scheduled to occur over the summer. Photo credit: NASA/Dimitri Gerondidakis KSC-06pd0782

KENNEDY SPACE CENTER, FLA. - Jim Adams (right), deputy project manager...

KENNEDY SPACE CENTER, FLA. - Jim Adams (right), deputy project manager for NASA's Solar Terrestrial Relations Observatory (STEREO), Goddard Space Flight Center, presents a certificate of appreciation to Dwayne ... More

KENNEDY SPACE CENTER, FLA. --   In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0087

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servi... More

KENNEDY SPACE CENTER, FLA. --  In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0091

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility ...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servic... More

KENNEDY SPACE CENTER, FLA. --  In the hypergolic maintenance facility at NASA's Kennedy Space Center,  technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0092

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility ...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servic... More

KENNEDY SPACE CENTER, FLA. --   In the hypergolic maintenance facility at NASA's Kennedy Space Center,  technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0088

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servi... More

KENNEDY SPACE CENTER, FLA. --   In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0081

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation... More

KENNEDY SPACE CENTER, FLA. --   In the hypergolic maintenance facility at NASA's Kennedy Space Center, some of the internal elements seen here of the ARES I-X Roll Control System, or RoCS, will undergo testing.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0082

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, some of the internal elements seen here of the ARES I-X Roll Control System, or RoCS, will undergo testing.... More

KENNEDY SPACE CENTER, FLA. --  In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0090

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility ...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoC... More

KENNEDY SPACE CENTER, FLA. --  In the hypergolic maintenance facility at NASA's Kennedy Space Center,  technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0089

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility ...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servic... More

KENNEDY SPACE CENTER, FLA. --  In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians look at some of the elements to be tested in the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0083

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility ...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians look at some of the elements to be tested in the Ares I-X Roll Control System, or RoCS. The RoC... More

KENNEDY SPACE CENTER, FLA. --  In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS.  The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator.  In an effort to reduce costs and meet the  schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage.  This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system.  At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element.  Photo credit: NASA/Kim Shiflett KSC-08pd0084

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility ...

KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS. The RoCS Serv... More

CAPE CANAVERAL, Fla. -- This graphic depicts the goal of NASA's Commercial Crew Program, or CCP, heading into the Commercial Crew Transportation Capability contract known as CCtCap. This phase of the CCP will enable NASA to ensure a company's crew transportation system is safe, reliable and cost-effective. The certification process will assess progress throughout the production and testing of one or more integrated space transportation systems, which include rockets, spacecraft, missions and ground operations. Requirements under CCtCap also will include at least one crewed flight test to the space station before certification can be granted. For more information, visit www.nasa.gov/commercialcrew. Image credit: NASA/Greg Lee KSC-2013-4527

CAPE CANAVERAL, Fla. -- This graphic depicts the goal of NASA's Commer...

CAPE CANAVERAL, Fla. -- This graphic depicts the goal of NASA's Commercial Crew Program, or CCP, heading into the Commercial Crew Transportation Capability contract known as CCtCap. This phase of the CCP will e... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4233

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4239

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4234

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4236

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4237

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4235

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is about to be offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4243

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is about to be offloaded from the Super Guppy aircraft. The la... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft and a crane is loading it on to a transport truck. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.          The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4252

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft and a crane i... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4241

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft and a crane is loading it on to a transport truck. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.          The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4253

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft and a crane i... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process to offload the heat shield for the agency's Orion spacecraft from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4242

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process to offload the heat shield for the agency's Orion spacecraft from the Super Guppy ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4250

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft and a crane is loading it on to a transport truck. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.        The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4251

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft and a crane i... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4240

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4249

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the agency's Super Guppy aircraft is opened to offload the heat shield for the Orion spacecraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4244

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the agency's Super Guppy aircraft is opened to offload the heat shield for the Orion spacecraft. The largest of ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4247

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4246

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft, seen in the background. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. A transport truck is delivering it to Kennedy's Operations and Checkout Building where the Orion spacecraft is being prepared for its first unpiloted flight test, Exploration Flight Test-1 EFT-1, scheduled for September 2014.            The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4254

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft has been offloaded from the Super Guppy aircraft, seen in the ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4248

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is being offloaded from the Super Guppy aircraft. The largest ... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2359

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an O... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2360

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an O... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. Technicians are preparing the mockup of the crew module inner hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2373

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians are preparing the mockup of the ogive hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2376

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attached the GIZMO to remove the outer ogive panel hatch on the Orion crew module simulator. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2364

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attach the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, onto the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2365

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2366

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. Technicians used the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, to install the mockup of the crew module inner hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2374

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attach the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, onto the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2363

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. A technician on an access platform and diving board removes the mockup of the crew module hatch. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2369

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. The inner hatch has been removed. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2370

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians are preparing the mockup of the ogive hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2375

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2368

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform and diving board have been added leading up to the mockup of the crew module hatch. The inner hatch has been removed The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2371

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2358

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an O... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2367

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians installed the mockup of the ogive hatch using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2377

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. Technicians are preparing the mockup of the crew module inner hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.    Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2372

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.     Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2361

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel an... More

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task.     Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2014-2362

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s ...

CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel an... More