test flight, spacecraft

1,670 media by topicpage 1 of 17
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at NASA's Marshall Space Flight Center in Huntsville, Alabama. The briefing took place in the spaceport's Booster Fabrication Facility BFF. During the Space Shuttle Program, the facility was used for processing forward segments and aft skirts for the solid rocket boosters. The BFF will serve a similar role for the SLS.      Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett KSC-2014-4616

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, memb...

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at ... More

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a full-size mock-up of the Orion spacecraft and launch abort system were transported to the Kennedy Space Center Visitor Complex. In the background are full-size replicas of the external fuel tank and solid rocket boosters that mark the entranceway to the new Space Shuttle Atlantis exhibit. Crane operators and technicians practice de-stacking operations on mock-ups of Orion and the launch abort system in the Vehicle Assembly Building in order to keep processing procedures and skills current.    Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann KSC-2013-2903

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a fu...

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a full-size mock-up of the Orion spacecraft and launch abort system were transported to the Kennedy Space Center Visitor Complex. In the backgro... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.      The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Cory Huston KSC-2013-4238

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft arrived aboard the Super Guppy aircraft. The largest of its ki... More

APOLLO SPACECRAFT 009 - SATURN 1B 201 - ON PAD - COMPLEX 34 - CAPE

APOLLO SPACECRAFT 009 - SATURN 1B 201 - ON PAD - COMPLEX 34 - CAPE

Apollo Spacecraft 009 atop the Saturn 1B launch vehicle is seen at Launch Complex 34 during the Saturn 1B countdown demonstration. Preparations are continuing for the Apollo Saturn 201 Test Flight. CAPE... More

Brazil, Atlantic Ocean, Africa & Antarctica seen from Apollo 4

Brazil, Atlantic Ocean, Africa & Antarctica seen from Apollo 4

AS04-01-580 (9 Nov. 1967) --- Earth as viewed from 10,000 miles. In 1969, the Apollo 4 (Spacecraft 017/Saturn 501) unmanned test flight made a great ellipse around Earth as a test of the translunar motors and o... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is about to be offloaded from the Super Guppy aircraft. The largest of its kind ever built, the heat shield is planned for installation on the Orion crew module in March of next year. The Orion spacecraft is scheduled to make its first unpiloted flight test, Exploration Flight Test-1 EFT-1, in September 2014.    The Orion spacecraft is designed to meet requirements for traveling beyond low-Earth orbit. The spacecraft will serve as the exploration vehicle that will carry crews to space, sustain the astronauts during the space travel and provide safe re-entry from deep space. For more information, visit: http://www.nasa.gov/orion Photo credit: NASA/Charisse Nasher KSC-2013-4245

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the heat shield for the agency's Orion spacecraft is about to be offloaded from the Super Guppy aircraft. The la... More

CAPE CANAVERAL, Fla. -- U.S. Rep. Bill Posey listens to remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1484

CAPE CANAVERAL, Fla. -- U.S. Rep. Bill Posey listens to remarks during...

CAPE CANAVERAL, Fla. -- U.S. Rep. Bill Posey listens to remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. ... More

CAPE CANAVERAL, Fla. --John Zarella leads a standing ovation during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1514

CAPE CANAVERAL, Fla. --John Zarella leads a standing ovation during th...

CAPE CANAVERAL, Fla. --John Zarella leads a standing ovation during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20,... More

CAPE CANAVERAL, Fla. -- John Zarella makes remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1505

CAPE CANAVERAL, Fla. -- John Zarella makes remarks during the "On Shou...

CAPE CANAVERAL, Fla. -- John Zarella makes remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The... More

SAN DIEGO, Calif. – NASA Administrator Charlie Bolden, center, talks to Milt Heflin on the USS Anchorage on the first day of Orion Underway Recovery Test 3. Heflin was a former space shuttle flight director and Mission Operations executive with experience as a recovery engineer for several Apollo, Skylab and Apollo-Soyuz Test Project missions. At left is Brandi Dean, NASA Public Affairs Office. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters.    The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston KSC-2014-3946

SAN DIEGO, Calif. – NASA Administrator Charlie Bolden, center, talks t...

SAN DIEGO, Calif. – NASA Administrator Charlie Bolden, center, talks to Milt Heflin on the USS Anchorage on the first day of Orion Underway Recovery Test 3. Heflin was a former space shuttle flight director and... More

CAPE CANAVERAL, Fla. -- Cal Fowler, Launch test director during Mercury, speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1485

CAPE CANAVERAL, Fla. -- Cal Fowler, Launch test director during Mercur...

CAPE CANAVERAL, Fla. -- Cal Fowler, Launch test director during Mercury, speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 ... More

CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana, center, talks with U.S. Rep. Bill Posey, left and U.S. Sen. Bill Nelson following the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1498

CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana, cent...

CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana, center, talks with U.S. Rep. Bill Posey, left and U.S. Sen. Bill Nelson following the "On Shoulders of Giants" program celebrating 50 years of A... More

CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana makes remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1506

CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana makes...

CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana makes remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 m... More

CAPE CANAVERAL, Fla. -- A crowd looks on during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1508

CAPE CANAVERAL, Fla. -- A crowd looks on during the "On Shoulders of G...

CAPE CANAVERAL, Fla. -- A crowd looks on during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was... More

CAPE CANAVERAL, Fla. -- U.S. Rep. Bill Posey, left, prepares to ride in the Corvette parade following the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1504

CAPE CANAVERAL, Fla. -- U.S. Rep. Bill Posey, left, prepares to ride i...

CAPE CANAVERAL, Fla. -- U.S. Rep. Bill Posey, left, prepares to ride in the Corvette parade following the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Gle... More

CAPE CANAVERAL, Fla. --A crowd looks on during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1509

CAPE CANAVERAL, Fla. --A crowd looks on during the "On Shoulders of Gi...

CAPE CANAVERAL, Fla. --A crowd looks on during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was ... More

CAPE CANAVERAL, Fla. -- Mercury astronauts Scott Carpenter, left, and John Glenn listen to remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1488

CAPE CANAVERAL, Fla. -- Mercury astronauts Scott Carpenter, left, and ...

CAPE CANAVERAL, Fla. -- Mercury astronauts Scott Carpenter, left, and John Glenn listen to remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with... More

CAPE CANAVERAL, Fla. --Kennedy Space Center Director Bob Cabana, left, prepares to ride in the Corvette parade following the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1499

CAPE CANAVERAL, Fla. --Kennedy Space Center Director Bob Cabana, left,...

CAPE CANAVERAL, Fla. --Kennedy Space Center Director Bob Cabana, left, prepares to ride in the Corvette parade following the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era w... More

CAPE CANAVERAL, Fla. -- U.S. Sen. Bill Nelson speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1507

CAPE CANAVERAL, Fla. -- U.S. Sen. Bill Nelson speaks during the "On Sh...

CAPE CANAVERAL, Fla. -- U.S. Sen. Bill Nelson speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. T... More

CAPE CANAVERAL, Fla. --Kennedy Space Center Director Bob Cabana makes remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. Looking on are U.S. Rep. Bill Posey, left, and event MC John Zarella. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft.  Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett KSC-2012-1480

CAPE CANAVERAL, Fla. --Kennedy Space Center Director Bob Cabana makes ...

CAPE CANAVERAL, Fla. --Kennedy Space Center Director Bob Cabana makes remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mi... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base,  Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft.  The GP-B towers behind them.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from St... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installi... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing ... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing... More

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing fac...

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity ... More

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing fac...

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day pro... More

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing fac...

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing ... More

VANDENBERG AFB, CALIF. -  In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility o...

VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for inst... More

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and  installed on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing fac...

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraf... More

CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane is being used to remove the 80-foot lightning mast from the top of the fixed service structure.  The mast is no longer needed with the erection of the three lightning towers around the pad.  Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.  The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system.  This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle.  Photo credit: NASA/Amanda Diller KSC-2009-1940

CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Cente...

CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane is being used to remove the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer... More

VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and  installed on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing fa...

VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spac... More

VANDENBERG AFB, CALIF. -  Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing fa...

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day pr... More

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft.  Installing each array is a 3-day process and includes a functional deployment test.  The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin.  The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it).  Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system.  The mission will look in a precision manner for tiny changes in the direction of spin.

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing fac...

VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each arr... More

SPACE SHUTTLE ORBITER COLUMBIA 102 IS SHOWN BACKING OUT OF ITS MANUFACTURING FACILITY AT PALMDALE, CA THE ROCKWELL INTERNATIONAL SPACE DIVISION PLANT, ENROUTE TO DRYDEN FLIGHT RESEARCH CENTER. THIS ORBITER WILL BE THE FIRST SHUTTLE SPACECRAFT THAT WILL CARRY TWO ASTRONAUTS, JOHN YOUNG AND RICHARD CRIPPEN, INTO EARTH ORBITAL TEST FLIGHT IN LATE 1979. ARC-1980-AC80-0107-11

SPACE SHUTTLE ORBITER COLUMBIA 102 IS SHOWN BACKING OUT OF ITS MANUFAC...

SPACE SHUTTLE ORBITER COLUMBIA 102 IS SHOWN BACKING OUT OF ITS MANUFACTURING FACILITY AT PALMDALE, CA THE ROCKWELL INTERNATIONAL SPACE DIVISION PLANT, ENROUTE TO DRYDEN FLIGHT RESEARCH CENTER. THIS ORBITER WILL... More

Space Shuttle Orbiter 102 Columbia is shown backing out of its manufacturing facililty at Palmdale, CA, the Rockwell international Space Division Plant, enroute to Dryden Flgiht Research Center.  This Orbiter will be the first shuttle spacecraft that will carry two astronauts, John Young and Richard Crippen, into earth orbital test flight in late 1979. ARC-1980-AC80-0107-10

Space Shuttle Orbiter 102 Columbia is shown backing out of its manufac...

Space Shuttle Orbiter 102 Columbia is shown backing out of its manufacturing facililty at Palmdale, CA, the Rockwell international Space Division Plant, enroute to Dryden Flgiht Research Center. This Orbiter w... More

Cape Canaveral, Fla....A Trident II (D-5) missile is launched from Pad 46A during the Navy's fifteenth developmental test flight. The missile, which was destroyed minutes afterward following a second stage malfunction, is designed for submerged firing from the ninth nuclear-powered ballistic missile submarine, USS Tennessee (SSBN-734). The first eight Ohio class ballistic missile submarines will be backfitted to carry the Trident II in accordance with regularly scheduled shipyard availability. OFFICIAL U.S. NAVY PHOTO (RELEASED)

Cape Canaveral, Fla....A Trident II (D-5) missile is launched from Pad...

The original finding aid described this photograph as: Country: Unknown Release Status: Released to Public Combined Military Service Digital Photographic Files

Space Shuttle Columbia, STS-4. NASA public domain image. Kennedy space center.

Space Shuttle Columbia, STS-4. NASA public domain image. Kennedy space...

(May 26, 1982) A view of Space Shuttle Columbia sitting on Launch Pad 39A at the Kennedy Space Center following the rollout for its STS-4 mission. The mission launched on June 27, 1982 as the final test flight ... More

Space Shuttle Columbia, STS-4 - PREFLIGHT - KSC

Space Shuttle Columbia, STS-4 - PREFLIGHT - KSC

S82-32169 (26 May 1982) --- View of the space shuttle Columbia sitting on Launch Pad 39A at Kennedy Space Center (KSC), following rollout for STS-4, as preparations continue toward a late June launch. The fourt... More

The first developmental flight test model of the Trident II D5X-1 missile is launched from a flat pad.  The missile is designed for submerged firing from the ninth TRIDENT submarine USS TENNESSEE (SSBN 734), and subsequent Ohio Class Trident Ballistic Missile Submarines

The first developmental flight test model of the Trident II D5X-1 miss...

The original finding aid described this photograph as: Base: Cape Canaveral Air Force Station State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Tgs Technology, Inc. Release... More

A Trident II (D-5X3) ballistic missile is launched from a flat pad during the third developmental test flight of the system.  The missile is designed for sumberged firing from the ninth nuclear-powered ballistic missile submarine USS TENNESSEE (SSBN 734) and all subsequent submarines in its class.  Note:  Second view in a series of five

A Trident II (D-5X3) ballistic missile is launched from a flat pad dur...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Public Com... More

A Trident II (D-5X3) ballistic missile is launched from a flat pad during the third developmental test flight of the system.  The missile is designed for submerged firing from the ninth nuclear-powered ballistic missile submarine USS TENNESSEE (SSBN 734) and all subsequent submarines in its class.  Note:  Third view in a series of five

A Trident II (D-5X3) ballistic missile is launched from a flat pad dur...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Public Com... More

A Trident II (D-5X3) intercontinental ballistic missile is launched during the third developmental test flight of the system.  The missile is designed for submerged firing from the ninth nuclear-powered fleet ballistic missile submarine USS TENNESSEE (SSBN 734) and all subsequent submarines in its class.  Note:  First view in a series of six

A Trident II (D-5X3) intercontinental ballistic missile is launched du...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Public Com... More

A Trident II (D-5X3) intercontinental ballistic missile is launched during the third developmental test flight of the system.  The missile is designed for submerged firing from the ninth nuclear-powered fleet ballistic missile submarine USS TENNESSEE (SSBN 734) and all subsequent submarines in its class.  Note:  Second view in a series of six

A Trident II (D-5X3) intercontinental ballistic missile is launched du...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Public Com... More

A Trident II (D-5X3) intercontinental ballistic missile is launched during the third developmental test flight of the system.  The missile is designed for submerged firing from the ninth nuclear-powered fleet ballistic missile submarine USS TENNESSEE (SSBN 734) and all subsequent submarines in its class.  Note:  Third view in a series of six

A Trident II (D-5X3) intercontinental ballistic missile is launched du...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Unknown Release Status: Released to Public Com... More

A Trident II (D-5) missile clears the launch pad during a US Navy developmental test flight.  The missile is designed for submerged firing from the ninth nuclear-powered ballistic missile submarine, USS TENNESSEE (SSBN 734).  The first eight Ohio class ballistic missile submarines will be backfitted to carry the Trident II missile in accodance with regularly scheduled shipyard availability.  Note:  Fifth view in a series of seven

A Trident II (D-5) missile clears the launch pad during a US Navy deve...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Lockheed Missile And Space Div. Release Status... More

A Trident II (D-5) missile is launched from a flat pad during the Navy's eighth development test flight.  The missile is designed for submerged firing from the ninth nuclear-powered ballistic missile submarine, USS TENNESSEE (SSBN 734).  The first eight Ohio class ballistic missile submarines will be backfitted to carry the Trident II missile in accodance with regularly scheduled shipyard availability.  Note:  Second view in a series of eight

A Trident II (D-5) missile is launched from a flat pad during the Navy...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Lockheed Missile And Space Div. Release Status... More

A Trident II (D-5) missile is launched from a flat pad during the Navy's eighth development test flight.  The missile is designed for submerged firing from the ninth nuclear-powered ballistic missile submarine, USS TENNESSEE (SSBN 734).  The first eight Ohio class ballistic missile submarines will be backfitted to carry the Trident II missile in accodance with regularly scheduled shipyard availability.  Note:  Third view in a series of eight

A Trident II (D-5) missile is launched from a flat pad during the Navy...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Lockheed Missile And Space Div. Release Status... More

KENNEDY SPACE CENTER, FLA.  -- Workers in the Payload Hazardous Servicing Facility test equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby KSC-98pc1091

KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servic...

KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility test equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA'... More

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The lander is being transported to the Spacecraft Assembly and Encapsulation Facility-2(SAEF-2) in the KSC Industrial Area for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars Polar Lander spacecraft is planned for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999 KSC-98pc1196

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mar...

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astrona... More

KENNEDY SPACE CENTER, FLA. -- KSC workers give a final check to Deep Space 1 before starting a spin test on the spacecraft at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches KSC-98pc1209

KENNEDY SPACE CENTER, FLA. -- KSC workers give a final check to Deep S...

KENNEDY SPACE CENTER, FLA. -- KSC workers give a final check to Deep Space 1 before starting a spin test on the spacecraft at the Defense Satellite Communications System Processing Facility (DPF), Cape Canavera... More

KENNEDY SPACE CENTER, FLA. -- KSC workers prepare Deep Space 1 for a spin test on the E6R Spin Balance Machine at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches KSC-98pc1208

KENNEDY SPACE CENTER, FLA. -- KSC workers prepare Deep Space 1 for a s...

KENNEDY SPACE CENTER, FLA. -- KSC workers prepare Deep Space 1 for a spin test on the E6R Spin Balance Machine at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Statio... More

Apollo 7 pioneer Walt Cunningam poses for the camera with two pilots from the 62nd Fighter Squadron in front of an F-16 Fighting Falcon aircraft. Cunningham paid Luke Air Force Base, Arizona, a two day visit commemorating the 30-year anniversay of his historic eleven day voyage aboard the first manned flight test of third-generation US spacecraft

Apollo 7 pioneer Walt Cunningam poses for the camera with two pilots f...

The original finding aid described this photograph as: Base: Luke Air Force Base State: Arizona (AZ) Country: United States Of America (USA) Scene Camera Operator: A1C Shanna Y. Jones, USAF Release Status:... More

At Hangar AE, Cape Canaveral Air Station, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is unveiled before prelaunch processing. FUSE will undergo a functional test of its systems, followed by installation of the flight batteries and solar arrays. Tests are also scheduled for the communications and data systems linking FUSE with the spacecraft control center at The Johns Hopkins University, Baltimore, Md. FUSE was developed and will be operated by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. The launch aboard a Boeing Delta II rocket is targeted for May 20 at Launch Complex 17 KSC-99pp0381

At Hangar AE, Cape Canaveral Air Station, NASA's Far Ultraviolet Spect...

At Hangar AE, Cape Canaveral Air Station, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is unveiled before prelaunch processing. FUSE will undergo a functional test of its systems, followed by ... More

Workers in Hangar AE, Cape Canaveral Air Station, get ready to remove the protective shipping cover from NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite for prelaunch processing. FUSE will undergo a functional test of its systems, followed by installation of the flight batteries and solar arrays. Tests are also scheduled for the communications and data systems linking FUSE with the spacecraft control center at The Johns Hopkins University, Baltimore, Md. FUSE was developed and will be operated by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. The launch aboard a Boeing Delta II rocket is targeted for May 20 at Launch Complex 17 KSC-99pp0379

Workers in Hangar AE, Cape Canaveral Air Station, get ready to remove ...

Workers in Hangar AE, Cape Canaveral Air Station, get ready to remove the protective shipping cover from NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite for prelaunch processing. FUSE will underg... More

At Hangar AE, Cape Canaveral Air Station, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands alone after workstands have been removed. As part of prelaunch processing, FUSE will undergo a functional test of its systems, followed by installation of the flight batteries and solar arrays. Tests are also scheduled for the communications and data systems linking FUSE with the spacecraft control center at The Johns Hopkins University, Baltimore, Md. FUSE was developed and will be operated by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. The launch aboard a Boeing Delta II rocket is targeted for May 20 at Launch Complex 17 KSC-99pp0382

At Hangar AE, Cape Canaveral Air Station, NASA's Far Ultraviolet Spect...

At Hangar AE, Cape Canaveral Air Station, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands alone after workstands have been removed. As part of prelaunch processing, FUSE will undergo a fun... More

Workers in Hangar AE, Cape Canaveral Air Station, begin removing the plastic covering from NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite before prelaunch processing. FUSE will undergo a functional test of its systems, followed by installation of the flight batteries and solar arrays. Tests are also scheduled for the communications and data systems linking FUSE with the spacecraft control center at The Johns Hopkins University, Baltimore, Md. FUSE was developed and will be operated by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. The launch aboard a Boeing Delta II rocket is targeted for May 20 at Launch Complex 17 KSC-99pp0380

Workers in Hangar AE, Cape Canaveral Air Station, begin removing the p...

Workers in Hangar AE, Cape Canaveral Air Station, begin removing the plastic covering from NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite before prelaunch processing. FUSE will undergo a functio... More

CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers attach a large overhead crane to the Ares I-X service module, on the floor.  The module will be lifted and mated to the service adapter.  Ares I-X is the test flight for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Tim Jacobs KSC-2009-1892

CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building ...

CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers attach a large overhead crane to the Ares I-X service module, on the floor. The module w... More

KENNEDY SPACE CENTER, FLA. --  Inside the Spacecraft Assembly and Encapsulation Facility 2, a covered Microwave Anisotropy Probe (MAP) satellite is revealed after removal of the container (far right). MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0887

KENNEDY SPACE CENTER, FLA. -- Inside the Spacecraft Assembly and Enca...

KENNEDY SPACE CENTER, FLA. -- Inside the Spacecraft Assembly and Encapsulation Facility 2, a covered Microwave Anisotropy Probe (MAP) satellite is revealed after removal of the container (far right). MAP will ... More

KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisotropy Probe (MAP) satellite inside moves into the Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0885

KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisotr...

KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisotropy Probe (MAP) satellite inside moves into the Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 bef... More

KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) satellite arrives at KSC’s Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0883

KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) sat...

KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) satellite arrives at KSC’s Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch... More

KENNEDY SPACE CENTER, FLA. --  The container with the Microwave Anisotropy Probe (MAP) satellite inside is backed into the Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0884

KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisot...

KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisotropy Probe (MAP) satellite inside is backed into the Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-... More

KENNEDY SPACE CENTER, FLA. --  Workers in the Spacecraft Assembly and Encapsulation Facility 2 place an antenna on the Microwave Anisotropy Probe (MAP). Several other milestones must be completed while MAP is at SAEF-2, including solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0942

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and ...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 place an antenna on the Microwave Anisotropy Probe (MAP). Several other milestones must be completed while MAP is a... More

KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) is worked on in the Spacecraft Assembly and Encapsulation Facility 2. Several milestones must be completed while MAP is at SAEF-2, including antenna installations, solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0939

KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) is ...

KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) is worked on in the Spacecraft Assembly and Encapsulation Facility 2. Several milestones must be completed while MAP is at SAEF-2, including an... More

KENNEDY SPACE CENTER, FLA. --  Workers in the Spacecraft Assembly and Encapsulation Facility 2 stand by while the Microwave Anisotropy Probe (MAP) is lifted to place it on a workstand. Several milestones must be completed while MAP is at SAEF-2, including antenna installations, solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0940

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and ...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 stand by while the Microwave Anisotropy Probe (MAP) is lifted to place it on a workstand. Several milestones must b... More

KENNEDY SPACE CENTER, FLA. --  In the Spacecraft Assembly and Encapsulation Facility 2, the Microwave Anisotropy Probe (MAP) undergoes testing and checkout. Several milestones must be completed while MAP is at SAEF-2, including antenna and solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp0944

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsul...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, the Microwave Anisotropy Probe (MAP) undergoes testing and checkout. Several milestones must be completed while MAP is at ... More

KENNEDY SPACE CENTER, FLA.  --  On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Boeing Delta rocket arrives at the pad. When fully assembled, the rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01PP1025

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral...

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Boeing Delta rocket arrives at the pad. When fully assembled, the rocket is scheduled to launch the... More

KENNEDY SPACE CENTER, FLA. --  On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Boeing Delta rocket is suspended in the gantry on the pad. When fully assembled, the rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01PP1027

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral ...

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Boeing Delta rocket is suspended in the gantry on the pad. When fully assembled, the rocket is sched... More

KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as the solar panels on the Microwave Anisotropy Probe (MAP) spacecraft are deployed in the Spacecraft Assembly and Encapsulation Facility 2. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1056

KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as th...

KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as the solar panels on the Microwave Anisotropy Probe (MAP) spacecraft are deployed in the Spacecraft Assembly and Encapsulation Facility 2. MAP ... More

KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as the solar panels on the Microwave Anisotropy Probe (MAP) spacecraft are deployed in the Spacecraft Assembly and Encapsulation Facility 2. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1057

KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as th...

KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as the solar panels on the Microwave Anisotropy Probe (MAP) spacecraft are deployed in the Spacecraft Assembly and Encapsulation Facility 2. MAP ... More

KENNEDY SPACE CENTER, FLA. -- At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the fairing for the Microwave Anisotropy Probe (MAP) spacecraft arrives in the White Room. There it will wait for the arrival of the spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1060

KENNEDY SPACE CENTER, FLA. -- At the gantry on Complex 17-A, Cape Cana...

KENNEDY SPACE CENTER, FLA. -- At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the fairing for the Microwave Anisotropy Probe (MAP) spacecraft arrives in the White Room. There it will wait for t... More

At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the fairing for the Microwave Anisotropy Probe (MAP) spacecraft is raised for its lift to the White Room. There it will wait for the arrival of the spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1058

At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the f...

At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the fairing for the Microwave Anisotropy Probe (MAP) spacecraft is raised for its lift to the White Room. There it will wait for the arrival of t... More

KENNEDY SPACE CENTER, Fla. -- The Microwave Anisotropy Probe (MAP) is lowered onto the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1125

KENNEDY SPACE CENTER, Fla. -- The Microwave Anisotropy Probe (MAP) is ...

KENNEDY SPACE CENTER, Fla. -- The Microwave Anisotropy Probe (MAP) is lowered onto the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assist... More

KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1134

KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing... More

KENNEDY SPACE CENTER, Fla. -- Photographers gather in the Spacecraft Assembly and Encapsulation Facility -2 for a media showing of the Microwave Anisotropy Probe (MAP). The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1135

KENNEDY SPACE CENTER, Fla. -- Photographers gather in the Spacecraft A...

KENNEDY SPACE CENTER, Fla. -- Photographers gather in the Spacecraft Assembly and Encapsulation Facility -2 for a media showing of the Microwave Anisotropy Probe (MAP). The MAP is mated to the upper stage of th... More

KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1133

KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing... More

KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP), suspended by a crane, crosses the facility to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1124

KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP), suspended by a crane, crosses the facility to the upper stage of the Boeing Delta II... More

KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP) is lifted for moving to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1123

KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP) is lifted for moving to the upper stage of the Boeing Delta II rocket. The rocket is ... More

KENNEDY SPACE CENTER, Fla. -- The morning sky is nearly clear over Launch Complex 17-A, Cape Canaveral Air Force Station, and the waiting Boeing/Delta II rocket. The Atlantic Ocean can be seen on the horizon. Topping the rocket is the payload, the Microwave Anisotropy Probe (MAP) spacecraft. Launch is scheduled at 3:46 p.m. EDT June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1235

KENNEDY SPACE CENTER, Fla. -- The morning sky is nearly clear over Lau...

KENNEDY SPACE CENTER, Fla. -- The morning sky is nearly clear over Launch Complex 17-A, Cape Canaveral Air Force Station, and the waiting Boeing/Delta II rocket. The Atlantic Ocean can be seen on the horizon. T... More

KENNEDY SPACE CENTER, Fla. -- The Delta II rocket, carrying the Microwave Anisotropy Probe (MAP) spacecraft, arcs through the cloud-washed blue sky while photographers try to capture the spectacle from the ground. The successful launch from Launch Complex 17-A, Cape Canaveral Air Force Station, occurred at 3:46:46 p.m. EDT. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1236

KENNEDY SPACE CENTER, Fla. -- The Delta II rocket, carrying the Microw...

KENNEDY SPACE CENTER, Fla. -- The Delta II rocket, carrying the Microwave Anisotropy Probe (MAP) spacecraft, arcs through the cloud-washed blue sky while photographers try to capture the spectacle from the grou... More

KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for flight on Launch Complex 17-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower (right). Topping the rocket is the payload, the Microwave Anisotropy Probe (MAP) spacecraft. Launch is scheduled at 3:46 p.m. EDT June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC01padig235

KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for...

KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for flight on Launch Complex 17-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower (right). Topping the rocket is ... More

KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for flight on Launch Complex 17-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower. Topping the rocket is the payload, the Microwave Anisotropy Probe (MAP) spacecraft. Launch is scheduled at 3:46 p.m. EDT June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1234

KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for...

KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for flight on Launch Complex 17-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower. Topping the rocket is the payl... More

KENNEDY SPACE CENTER, Fla. -- Wrapped in billows of smoke and steam, the Boeing Delta II rocket lifts off Launch Complex 17-A, Cape Canaveral Air Force Station, carrying the Microwave Anisotropy Probe (MAP) spacecraft. The successful launch occurred at 3:46:46 p.m. EDT. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University KSC-01pp1240

KENNEDY SPACE CENTER, Fla. -- Wrapped in billows of smoke and steam, t...

KENNEDY SPACE CENTER, Fla. -- Wrapped in billows of smoke and steam, the Boeing Delta II rocket lifts off Launch Complex 17-A, Cape Canaveral Air Force Station, carrying the Microwave Anisotropy Probe (MAP) spa... More

KENNEDY SPACE CENTER, Fla. -- Engineers in Hangar A&E, Cape Canaveral Air Force Station, wait to track the launch of the Boeing Delta II rocket carrying the Microwave Anisotropy Probe (MAP) spacecraft. The screens above the console show the rocket on the launch pad. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University. Launch is scheduled for 3:46 p.m. EDT KSC-01pp1239

KENNEDY SPACE CENTER, Fla. -- Engineers in Hangar A&E, Cape Canaveral ...

KENNEDY SPACE CENTER, Fla. -- Engineers in Hangar A&E, Cape Canaveral Air Force Station, wait to track the launch of the Boeing Delta II rocket carrying the Microwave Anisotropy Probe (MAP) spacecraft. The scre... More

An Aries ballistic missile target is launched from the Pacific Missile Range Facility, Kauai, Hawaii during the US Navy (USN) and The Missile Defense Agency (MDA) successful flight test in the continuing development of the Sea-Based Midcourse (SMD) element of the Ballistic Missile Defense System

An Aries ballistic missile target is launched from the Pacific Missile...

The original finding aid described this photograph as: Base: PAC Msl Range Facility, Kauai State: Hawaii (HI) Country: United States Of America (USA) Scene Major Command Shown: SM-3 Misisle test in Hawaii ... More

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, workers prepare the SORCE satellite for a solar array test.  SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future.  The SORCE project is managed by NASA's Goddard Space Flight Center.  The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP).  Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002.  Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1667

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility,...

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, workers prepare the SORCE satellite for a solar array test. SORCE is equipped with four instruments that will measure variations in solar ... More

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, workers adjust the SORCE satellite for a solar array test.  SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA’s SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future.  The SORCE project is managed by NASA’s Goddard Space Flight Center.  The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP).  Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002.  Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1669

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility,...

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, workers adjust the SORCE satellite for a solar array test. SORCE is equipped with four instruments that will measure variations in solar r... More

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, the SORCE satellite undergoes a solar array test.  SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA’s SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future.  The SORCE project is managed by NASA’s Goddard Space Flight Center.  The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP).  Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002.  Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1671

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility,...

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, the SORCE satellite undergoes a solar array test. SORCE is equipped with four instruments that will measure variations in solar radiation ... More

KENNEDY SPACE CENTER, FLA. - Computers in the Multi-Purpose Processing Facility monitor a solar array test on the SORCE satellite, beyond the screening. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA’s SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future.  The SORCE project is managed by NASA’s Goddard Space Flight Center.  The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP).  Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002.  Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1672

KENNEDY SPACE CENTER, FLA. - Computers in the Multi-Purpose Processing...

KENNEDY SPACE CENTER, FLA. - Computers in the Multi-Purpose Processing Facility monitor a solar array test on the SORCE satellite, beyond the screening. SORCE is equipped with four instruments that will measure... More

KENNEDY SPACE CENTER, FLA. - Computers in the Multi-Purpose Processing Facility are set up to conduct a solar array test on the SORCE satellite, beyond the screening. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA’s SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future.  The SORCE project is managed by NASA’s Goddard Space Flight Center.  The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP).  Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002.  Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1668

KENNEDY SPACE CENTER, FLA. - Computers in the Multi-Purpose Processing...

KENNEDY SPACE CENTER, FLA. - Computers in the Multi-Purpose Processing Facility are set up to conduct a solar array test on the SORCE satellite, beyond the screening. SORCE is equipped with four instruments tha... More

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, workers adjust the SORCE satellite for a solar array test.  SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA’s SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future.  The SORCE project is managed by NASA’s Goddard Space Flight Center.  The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP).  Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002.  Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1670

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility,...

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, workers adjust the SORCE satellite for a solar array test. SORCE is equipped with four instruments that will measure variations in solar r... More

VANDENBERG AIR FORCE BASE, CALIF. -  The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft.  The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is re...

VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-... More

VANDENBERG AFB, CALIF. -   In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing.  The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects.  The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.   The targeted launch date is Dec. 6, 2003.

VANDENBERG AFB, CALIF. - In the spacecraft processing facility on No...

VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelau... More

VANDENBERG AFB, CALIF. -   A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing.  The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects.  The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.   The targeted launch date is Dec. 6, 2003.

VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facil...

VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a pa... More

VANDENBERG AFB, CALIF. -  The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif.  The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects.  The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.  The targeted launch date is Dec. 6, 2003.

VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehi...

VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. T... More

VANDENBERG AFB, CALIF. -  Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif.   Behind it is the first stage of the Delta II.  The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects.  The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.  The targeted launch date is Dec. 6, 2003.

VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the ...

VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air F... More

KENNEDY SPACE CENTER, FLA.  - This seal illustrates the mission of the Gravity Probe B spacecraft and the organizations who developed the experiment: Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.  The Gravity Probe B mission will test the theory of curved spacetime and "frame-dragging," depicted graphically in the lower half, that was developed by Einstein and other scientists.   Above the graphic is a drawing of GP-B circling the Earth.

KENNEDY SPACE CENTER, FLA. - This seal illustrates the mission of the...

KENNEDY SPACE CENTER, FLA. - This seal illustrates the mission of the Gravity Probe B spacecraft and the organizations who developed the experiment: Stanford University, NASA’s Marshall Space Flight Center and... More

KENNEDY SPACE CENTER, FLA. -  Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The view reveals the river gravel surface that is 4 inches thick on the straightaway sections and 8 inches thick on curves. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns.  The boosters are braced at the top for stability.  The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 ...

KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analys... More

Previous

of 17

Next