visibility Similar

VANDENBERG AIR FORCE BASE, Calif. -- An Alliant motor designated for Stage 3 of a Taurus rocket is weighed by Orbital Sciences workers in Building 1555 at Vandenberg AFB. The Taurus will launch the Orbiting Carbon Observatory, or OCO, in January 2009. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. OCO will provide space-based observations of atmospheric carbon dioxide (CO2), the principal human-initiated driver of climate change. Mature technologies will be used to address NASA's highest priority carbon cycle measurement requirement. NASA's Jet Propulsion Laboratory leads the OCO effort. Orbital Sciences Corporation is providing the Taurus launch vehicle; Hamilton Sundstrand Sensor Systems, the OCO spacecraft. Photo credit: NASA/Randy Beaudoin KSC-08pd2046

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 2 at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-126 crew participate in a crew equipment interface test, or CEIT. Here, Commander Chris Ferguson examines the nose cone of Endeavour. The CEIT provides hands-on experience with hardware and equipment slated to fly on their mission. Endeavour will deliver a multi-purpose logistics module to the International Space Station on the STS-126 mission. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett KSC-08pd2235

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the second stage of the Pegasus XL rocket that will launch the Nuclear Spectroscopic Telescope Array (NuSTAR) to orbit is moved to a stationary rail in Building 1555 for processing. After the rocket and spacecraft are processed at Vandenberg, they will be shipped to the Ronald Reagan Ballistic Missile Defense Test Site located at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2010-4694

The deputy director of the Army National Guard, Maj.

KENNEDY SPACE CENTER, FLA. -- Shown in the photo is the gaseous nitrogen pressure regulator in the left Orbital Maneuvering System pod on Space Shuttle Endeavour. The component showed pressure differentials during the launch count May 30, 2002, and mission managers elected to replace it after the launch was scrubbed due to weather concerns. The launch of Endeavour on Mission STS-111, Utilization Flight 2 to the International Space Station, has been rescheduled for June 5, 2002 KSC-02pd0853

S98E5058 - STS-098 - ISS hatch cover

Hall Thruster in Tank 5 GRC-2014-C-08594

KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin closing the gap between the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station. KSC-04pd1823

S126E011549 - STS-126 - Node 2 Hatch during MPLM Demate Preparations

code Related

KENNEDY SPACE CENTER, FLA. - In the RTG Facility at Kennedy Space Center, Jim Wojciechowski (left) and Rhett Rovig lift the radioisotope thermoelectric generator (RTG) from its stand to place it on a cart. It will then be maneuvered to a horizontal position. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2430

KENNEDY SPACE CENTER, FLA. - In the RTG Facility at Kennedy Space Center, Jim Wojciechowski and Dan Brunson install a clamping ring onto the radioisotope thermoelectric generator (RTG). Watching at right is Steve Killian. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2438

KENNEDY SPACE CENTER, FLA. - In the RTG Facility at Kennedy Space Center, Dan Brunson and Jim Wojciechowski lower the radioisotope thermoelectric generator (RTG) onto a transporter. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2436

KENNEDY SPACE CENTER, FLA. -In the RTG Facility at Kennedy Space Center, Jim Wojciechowski and Dan Brunson lower a metal canister over the radioisotope thermoelectric generator (RTG). The canister will protect the RTG when it is moved. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2440

KENNEDY SPACE CENTER, FLA. - At Kennedy Space Center, the container holding the radioisotope thermoelectric generator (RTG) is removed from a truck. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2420

KENNEDY SPACE CENTER, FLA. - In the RTG Facility at Kennedy Space Center, officials check the radioisotope thermoelectric generator (RTG) after being lowered onto a transporter. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2437

KENNEDY SPACE CENTER, FLA. - In the RTG Facility at Kennedy Space Center, Rhett Rovig, Mervin Smith, Amy Powell and June Wojciechowski inspect a clamping ring that will be installed on the radioisotope thermoelectric generator (RTG). The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2428

KENNEDY SPACE CENTER, FLA. - In the RTG Facility at Kennedy Space Center, the radioisotope thermoelectric generator (RTG) rests in a horizontal position. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2432

KENNEDY SPACE CENTER, FLA. - Inside the RTG facility at Kennedy Space Center, Dave Nobles oversees the operation as the container is lifted away from the radioisotope thermoelectric generator (RTG). The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2425

KENNEDY SPACE CENTER, FLA. - Inside the RTG facility at Kennedy Space Center, Tim Frazier, Mervin Smith and Tim Hoye inspect the radioisotope thermoelectric generator (RTG) after its arrival. Frazier is with the Department of Energy, which has provided the radioisotope, and Hoye is with Lockheed Martin. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015. KSC-05pd2427

description

Summary

KENNEDY SPACE CENTER, FLA. - Inside the RTG facility at Kennedy Space Center, Tim Frazier, Mervin Smith and Tim Hoye inspect the radioisotope thermoelectric generator (RTG) after its arrival. Frazier is with the Department of Energy, which has provided the radioisotope, and Hoye is with Lockheed Martin. The RTG is the baseline power supply for the NASA’s New Horizons spacecraft, scheduled to launch in January 2006 on a journey to Pluto and its moon, Charon. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon's surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. It is expected to reach Pluto in July 2015.

label_outline

Tags

kennedy space center rtg rtg facility tim frazier tim frazier mervin smith mervin smith hoye tim hoye radioisotope generator department energy martin baseline power baseline power new horizons spacecraft nasa new horizons spacecraft pluto moon charon approaches approaches pluto emission atmosphere maps wavelength methane frost methane frost surface science team science team compositions surface compositions locations temperatures materials close up pictures close up pictures energy generation high resolution nasa
date_range

Date

04/11/2005
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Hoye, Rtg Facility, Baseline Power

LIBERTE EMPIRE ET ROYAUTES. / ou 6 à 7 Têtes autor d'un Bonnet.

The a cappella group, Wavelength, performs a song arranged by the Pentatonix during a concert at Riverside Brookfield High School.

KENNEDY SPACE CENTER, FLA. - After being raised to a vertical position, the first stage of an Atlas V rocket is being moved into the Vertical Integration Facility to begin preparations for launch on Launch Complex 41 at Cape Canaveral Air Force Station. The Lockheed Martin Atlas V is the launch vehicle for the New Horizons spacecraft, which is designed to make the first reconnaissance of Pluto and Charon - a "double planet" and the last planet in our solar system to be visited by spacecraft. The mission will then visit one or more objects in the Kuiper Belt region beyond Neptune. New Horizons is scheduled to launch in January 2006, swing past Jupiter for a gravity boost and scientific studies in February or March 2007, and reach Pluto and its moon, Charon, in July 2015. KSC-05pd2268

KENNEDY SPACE CENTER, FLA. - The blurred image of the New Horizons spacecraft is the result of a spin test being conducted in NASA Kennedy Space Center’s Payload Hazardous Servicing Facility. The spacecraft is undergoing the spin test as part of prelaunch processing. New Horizons is expected to be launched in January 2006 on a journey to Pluto and its moon, Charon. It is expected to reach Pluto in July 2015. KSC-05pd2498

BASELINE GAS TURBINE ENGINE, NASA Technology Images

KENNEDY SPACE CENTER, FLA. - New Horizons arrives at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station where buildup of its Lockheed Martin Atlas V launch vehicle is complete. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2637

Members of the United States Geological Survey measuring a baseline near Fort Wingate, N.M., 1883

KENNEDY SPACE CENTER, FLA. - In the communications room above the Atlas V Spaceflight Operations Center on Cape Canaveral Air Force Station, NASA Public Information Officer George Diller rehearses his role for the upcoming launch of the New Horizons spacecraft. Behind him are Tiffany Nail, with the Launch Services Program at Kennedy Space Center, and Bob Summerville, a Lockheed Martin console system software engineer. Members of the New Horizons team are taking part in a dress rehearsal for the launch scheduled in mid-January. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2616

KENNEDY SPACE CENTER, FLA. - In the Vertical Integration Facility on Launch Complex 41 at Cape Canaveral Air Force Station in Florida, workers maneuver the fifth and final solid rocket booster into place for mating to the Lockheed Martin Atlas V rocket. Two of the other four rockets are seen at left. The Atlas V is the launch vehicle for the Pluto-bound New Horizons spacecraft that will make the first reconnaissance of Pluto and its moon, Charon - a "double planet" and the last planet in our solar system to be visited by spacecraft. As it approaches Pluto, the spacecraft will look for ultraviolet emission from Pluto's atmosphere and make the best global maps of Pluto and Charon in green, blue, red and a special wavelength that is sensitive to methane frost on the surface. It will also take spectral maps in the near infrared, telling the science team about Pluto's and Charon’s surface compositions and locations and temperatures of these materials. When the spacecraft is closest to Pluto or its moon, it will take close-up pictures in both visible and near-infrared wavelengths. The mission will then visit one or more objects in the Kuiper Belt region beyond Neptune. New Horizons is scheduled to launch in January 2006, swing past Jupiter for a gravity boost and scientific studies in February or March 2007, and reach Pluto and Charon in July 2015. KSC-05pd2528

Hull Maintenance Technician 1ST Class (HT1) John Cooper holds the measurement tape at a point called Baseline A on a historic shipwreck which dates back to about 1870. Members of the Naval Reserve Mobile Diving and Salvage Unit 2, Detachment 506 (MDSU-2, DET-506), from Norfolk, Virginia (VA), are assisting the National Park Service with archeological mapping of the wreck near Loggerhead Key

STS062-45-012 - STS-062 - Results of Auroral Photography Experiment-B

STAY SHARP - SOF BRAIN HEALTH - AFSOC The Comprehensive

Topics

kennedy space center rtg rtg facility tim frazier tim frazier mervin smith mervin smith hoye tim hoye radioisotope generator department energy martin baseline power baseline power new horizons spacecraft nasa new horizons spacecraft pluto moon charon approaches approaches pluto emission atmosphere maps wavelength methane frost methane frost surface science team science team compositions surface compositions locations temperatures materials close up pictures close up pictures energy generation high resolution nasa