visibility Similar

CAPE CANAVERAL, FIa. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane moves the flexible hose rotary coupler across the floor to the Lightweight Multi-Purpose Experiment Support Structure Carrier for installation. The carrier will be installed in space shuttle Endeavour for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Photo credit: NASA/Jim Grossmann KSC-08pd3087

CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder KSC-2011-4965

KENNEDY SPACE CENTER, FLA. - In the hazardous processing facility at Astrotech Space Operations in Titusville, Fla., technicians begin removing the protective cover from Observatory A of the STEREO spacecraft. The observatory will be lifted onto a scale for weight measurements and later will be fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/Jack Pfaller KSC-06pd1533

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft / SOLAR PANEL INSTALL

KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

In the Spacecraft Assembly & Encapsulation Facility -2, the solar array from the 2001 Mars Odyssey Orbiter is moved toward a workstand. This will give workers access to other components of the spacecraft and allow inspection of the array. The Mars Odyssey carries three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment as related to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0123

TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians prepare the Radiation Belt Storm Probes, or RBSP, spacecraft A prior to vertical stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann KSC-2012-4062

CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the service module bulkhead for the Orion spacecraft is lifted by crane from a work stand. The service module will be mated to the spacecraft adapter cone for testing. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2013-4108

Workers in Hangar AE, Cape Canaveral Air Station, begin removing the plastic covering from NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite before prelaunch processing. FUSE will undergo a functional test of its systems, followed by installation of the flight batteries and solar arrays. Tests are also scheduled for the communications and data systems linking FUSE with the spacecraft control center at The Johns Hopkins University, Baltimore, Md. FUSE was developed and will be operated by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. The launch aboard a Boeing Delta II rocket is targeted for May 20 at Launch Complex 17 KSC-99pp0380

code Related

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC-00pp0865

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC-00pp0845

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC-00pp0846

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC00pp0848

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC00pp0844

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC00pp0843

KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC00pp0851

KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC00pp0847

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. KSC00pp0841

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research KSC00pp0846

description

Summary

KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

Nothing Found.

label_outline

Tags

kennedy space center lab component international space station vacuum chamber vacuum chamber research research lab destiny element first space station element seven days leak test sts shuttle mission sts crew three space science science research facilities power life support control capabilities control capabilities module lab module tradition microgravity materials microgravity materials research skylab spacelab spacelab missions future research biotechnology fluid fluid physics combustion life sciences research ksc space shuttle nasa
date_range

Date

1960 - 1969
collections

in collections

Space Shuttle Program

place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Leak Test, First Space Station Element, Research Lab

Skylab. NASA Skylab space station - Public domain map

STS060-112-014 - STS-060 - WSF - Wake Shield Facility 1 (WSF 1) on the end of the RMS arm

S98E5214 - STS-098 - MS Curbeam prepares for EVA 3

STS096-350-035 - STS-096 - PLT Husband in front of hatch leading into CBM

KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, members of the STS-122 crew arrive for launch. From left are Mission Specialists Leopold Eyharts, Stanley Love, Hans Schlegel, Rex Walheim and Leland Melvin. They were greeted by Doug Lyons (left, yellow shirt), launch director for the mission, and Pete Nickolenko (right, green shirt), lead shuttle test director. Eyharts and Schlegel represent the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis' STS-122 mission, at 2:45 p.m. Feb. 7. This will be the third launch attempt for the mission. Some of the tank's ECO sensors gave failed readings during propellant tanking for launch attempts on Dec. 6 and Dec. 9, subsequently scrubbing further attempts until the cause could be found and repairs made. Atlantis will carry the Columbus module, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett KSC-08pd0125

A close up of a metal object on a table. Soviet radar tube.

Space Shuttle Columbia, Spacelab, Space Shuttle Program, NASA

STS060-76-100 - STS-060 - WSF - Wake Shield Facility 1 (WSF 1) overlooking the Earth limb

Skylab. NASA Skylab space station

STS096-350-032 - STS-096 - MS Payette in front of hatch leading into CBM

STS096-350-025 - STS-096 - PLT Husband in front of hatch leading into CBM

KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, a crane lifts a frustum high above the transfer aisle. The solid rocket booster segment is being moved into a high bay where it will be added to the stack being prepared for space shuttle mission STS-122, targeted for launch in December. On this mission, Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, also called Harmony, to carry out experiments in materials science, fluid physics and biosciences, as well as to support a number of technological applications. Photo credit: NASA/Jack Pfaller KSC-07pd2847

Topics

kennedy space center lab component international space station vacuum chamber vacuum chamber research research lab destiny element first space station element seven days leak test sts shuttle mission sts crew three space science science research facilities power life support control capabilities control capabilities module lab module tradition microgravity materials microgravity materials research skylab spacelab spacelab missions future research biotechnology fluid fluid physics combustion life sciences research ksc space shuttle nasa