composition explorer

51 media by topicpage 1 of 1
FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

FRANK SNOW, NASA history, Goddard space flight center

FRANK SNOW, NASA history, Goddard space flight center

The original finding aid described this as: Description: Frank Snow has been a member of the NASA Explorer Program at Goddard Space Flight Center since 1992. He was the Ground Manger for the Advanced Compositi... More

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, British engineers conduct tests on the United Kingdom Subsatellite, part of the three-spacecraft international Active Magnetospheric Particle Tracer Explorer AMPTE mission scheduled for launch on Aug. 9, 1984 aboard a Delta rocket. The 172-pound UKS contains a comprehensive set of plasma measuring instruments to record the effects of chemical clouds released by the West German built Ion Release Module. The other AMPTE spacecraft – the Charged Composition Explorer CCEUnited States) – will operate far below, from inside the Earth’s magnetosphere, where it will track the ionized clouds as it is swept along by the solar wind. With the CCE studying this activity from below, and the IRM and UKS studying it from above, scientists expect to acquire valuable new data on exactly how the solar wind interacts with the Earth’s magnetic fields. Photo Credit: NASA KSC-84PC-0228

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida...

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, British engineers conduct tests on the United Kingdom Subsatellite, part of the three-spacecraft international Active Magnetospheric Parti... More

Prelaunch processing begins on the Advanced  Composition Explorer (ACE) spacecraft in the Spacecraft Assembly and Encapsulation  Facility-2 (SAEF-2). ACE will investigate the origin and evolution of solar phenomenon,  the formation of the solar corona, solar flares and the acceleration of the solar wind.  ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory. The  spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8  rocket from Space Launch Complex 17, Pad A KSC-97PC905

Prelaunch processing begins on the Advanced Composition Explorer (ACE...

Prelaunch processing begins on the Advanced Composition Explorer (ACE) spacecraft in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). ACE will investigate the origin and evolution of solar pheno... More

Workers in the Spacecraft Assembly and  Encapsulation Facility-2 (SAEF-2) begin prelaunch processing of the Advanced  Composition Explorer (ACE) which will investigate the origin and evolution of solar  phenomenon, the formation of the solar corona, solar flares and the acceleration of the  solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory.  The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8  rocket from Space Launch Complex 17, Pad A KSC-97PC904

Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF...

Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) begin prelaunch processing of the Advanced Composition Explorer (ACE) which will investigate the origin and evolution of solar phenome... More

Workers from the Johns Hopkins University’s  Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS)  on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly  and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and  Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin  and evolution of solar phenomenon, the formation of the solar corona, solar flares and  the acceleration of the solar wind. ACE was developed for NASA by the APL. The  spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8  rocket from Space Launch Complex 17, Pad A KSC-97PC1013

Workers from the Johns Hopkins University’s Applied Physics Laborator...

Workers from the Johns Hopkins University’s Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assemb... More

Applied Physics Laboratory Engineer Cliff  Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins  University install solar array panels on the Advanced Composition Explorer (ACE) in  KSC’s Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a  Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy  particles of solar origin and high-energy galactic particles for a better understanding of  the formation and evolution of the solar system as well as the astrophysical processes  involved. The ACE observatory will be placed into an orbit almost a million miles (1.5  million kilometers) away from the Earth, about 1/100 the distance from the Earth to the  Sun. The collecting power of instrumentation aboard ACE is at least 100 times more  sensitive than anything previously flown to collect similar data by NASA KSC-97PC1079

Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engin...

Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC’... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University install solar array panels on the Advanced  Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II. The panel on which they are working is identical to the panel (one of four) seen in the  foreground on the ACE spacecraft. Scheduled for launch on a Delta II rocket from Cape  Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin  and high-energy galactic particles for a better understanding of the formation and  evolution of the solar system as well as the astrophysical processes involved. The ACE  observatory will be placed into an orbit almost a million miles (1.5 million kilometers)  away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting  power of instrumentation aboard ACE is at least 100 times more sensitive than anything  previously flown to collect similar data by NASA KSC-97PC1080

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University assist in guiding the Advanced Composition  Explorer (ACE) as it is hoisted over a platform for solar array installation in KSC’s  Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II  rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles  of solar origin and high-energy galactic particles. The ACE observatory will contribute to  the understanding of the formation and evolution of the solar system as well as the  astrophysical processes involved. The collecting power of instruments aboard ACE is 10  to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1077

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in guiding the Advanced Composition Explorer (ACE) as it is hoisted over a platform for solar array installation in KS... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University assist in leveling and orienting the Advanced  Composition Explorer (ACE) as it is seated on a platform for solar array installation in  KSC’s Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a  Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy  particles of solar origin and high-energy galactic particles. The ACE observatory has six  high-resolution particle detection sensors and three monitoring instruments. The  collecting power of instrumentation aboard ACE is at least 100 times more sensitive than  anything previously flown to collect similar data by NASA KSC-97PC1078

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in leveling and orienting the Advanced Composition Explorer (ACE) as it is seated on a platform for solar array instal... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University test solar array deployment of the Advanced  Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). The wire hanging from the ceiling above the black solar array panel is used  for "g-negation," which takes the weight off of the panel’s hinges to simulate zero  gravity, mimicking deployment in space. Scheduled for launch on a Delta II rocket from  Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar  origin and high-energy galactic particles for a better understanding of the formation and  evolution of the solar system as well as the astrophysical processes involved. The  collecting power of instrumentation aboard ACE is at least 100 times more sensitive than  anything previously flown to collect similar data by NASA KSC-97PC1129

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University test solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facilit... More

An Applied Physics Laboratory engineer from  Johns Hopkins University tests for true perpendicular solar array deployment of the  Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and  Encapsulation Facility-II (SAEF-II). The white magnetometer boom seen across the solar  array panel will deploy the panel once in space. Scheduled for launch on a Delta II rocket  from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of  solar origin and high-energy galactic particles. The ACE observatory will be placed into  an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100  the distance from the Earth to the Sun KSC-97PC1128

An Applied Physics Laboratory engineer from Johns Hopkins University ...

An Applied Physics Laboratory engineer from Johns Hopkins University tests for true perpendicular solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulat... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University test for true perpendicular solar array  deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft  Assembly and Encapsulation Facility-II (SAEF-II). The white magnetometer boom seen  across the solar array panel will deploy the panel once in space. Scheduled for launch on a  Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy  particles of solar origin and high-energy galactic particles. The ACE observatory will be  placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth,  about 1/100 the distance from the Earth to the Sun KSC-97PC1127

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University test for true perpendicular solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly a... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University test solar array deployment of the Advanced  Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). The wire hanging from the ceiling above the black solar array panel is used  for "g-negation," which takes the weight off of the panel’s hinges to simulate zero  gravity, mimicking deployment in space. Scheduled for launch on a Delta II rocket from  Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar  origin and high-energy galactic particles. The collecting power of instruments aboard  ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by  NASA KSC-97PC1126

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University test solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facilit... More

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1143

The first stage of the Delta II rocket which will to be used to launch...

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on ... More

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1144

The first stage of the Delta II rocket which will to be used to launch...

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on ... More

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1142

The first stage of the Delta II rocket which will to be used to launch...

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on ... More

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1141

The first stage of the Delta II rocket which will to be used to launch...

The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on ... More

The solid rocket motors of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft are erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1170

The solid rocket motors of the Delta II rocket which will to be used t...

The solid rocket motors of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft are erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for l... More

The second stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1175

The second stage of the Delta II rocket which will to be used to launc...

The second stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on... More

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1228

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin te...

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air S... More

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1227

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin te...

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air S... More

Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1230

Extension of the solar panels is tested on the Advanced Composition Ex...

Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from... More

The Advanced Composition Explorer (ACE) undergoes final prelaunch processing in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being transported to Pad A at Launch Complex 17, Cape Canaveral Air Station, for mating to the Delta II launch vehicle. This photo was taken during a news media opportunity. The worker at right is installing protective covering over one of the spacecraft’s solar arrays. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. Launch is targeted for Aug. 24 KSC-97PC1236

The Advanced Composition Explorer (ACE) undergoes final prelaunch proc...

The Advanced Composition Explorer (ACE) undergoes final prelaunch processing in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being transported to Pad A at Launch Complex 17, Cape Canav... More

The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1238

The Advanced Composition Explorer (ACE) spacecraft is placed atop its ...

The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study l... More

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1234

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), ...

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A.... More

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1232

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), ...

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A.... More

The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1240

The Advanced Composition Explorer (ACE) spacecraft is placed atop its ...

The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study l... More

Final prelaunch preparations are made at Launch Complex 17A, Cape Canaveral Air Station, for liftoff of the Boeing Delta II expendable launch vehicle with the Advanced Composition Explorer (ACE) spacecraft, at top. The black rectangular-shaped panel in front is one of ACE’s solar arrays. ACE will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. This will be the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff is scheduled Aug. 24 KSC-97DC1286

Final prelaunch preparations are made at Launch Complex 17A, Cape Cana...

Final prelaunch preparations are made at Launch Complex 17A, Cape Canaveral Air Station, for liftoff of the Boeing Delta II expendable launch vehicle with the Advanced Composition Explorer (ACE) spacecraft, at ... More

Workers make final checks as the second part of the bi-sector payload fairing for the Advanced Composition Explorer (ACE) is closed around the spacecraft at Launch Complex 17A, Cape Canaveral Air Station. ACE will be launched on a Boeing Delta II expendable launch vehicle. The spacecraft will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. This will be the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff is scheduled Aug. 24 KSC-97DC1283

Workers make final checks as the second part of the bi-sector payload ...

Workers make final checks as the second part of the bi-sector payload fairing for the Advanced Composition Explorer (ACE) is closed around the spacecraft at Launch Complex 17A, Cape Canaveral Air Station. ACE w... More

After launch tower retraction, the Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 24, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA’s Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology KSC-97PC1287

After launch tower retraction, the Boeing Delta II expendable launch v...

After launch tower retraction, the Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 24, 1997, at L... More

The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. The first launch attempt on Aug. 24 was scrubbed by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA’s Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology KSC-97PC1289

The Boeing Delta II expendable launch vehicle carrying the Advanced Co...

The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaver... More

Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff had been scheduled for Aug. 24, but was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif KSC-97PC1291

Photographers and other onlookers watch as a Boeing Delta II expendabl...

Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Comp... More

The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. The first launch attempt on Aug. 24 was scrubbed by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA’s Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology KSC-97PC1288

The Boeing Delta II expendable launch vehicle carrying the Advanced Co...

The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaver... More

The Boeing Delta II lifts off from complex 17A at 10:39 A.M. EDT. The Delta II carried NASA's Advanced Composition Explorer (ACE)

The Boeing Delta II lifts off from complex 17A at 10:39 A.M. EDT. The ...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Range Visual Info. TECH. Service Release Statu... More

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif KSC-97PC1293

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Adva...

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This i... More

The Boeing Delta II space launch vehicle sits at complex 17A, waiting to carry NASA's Advanced Composition Explorer (ACE) into orbit

The Boeing Delta II space launch vehicle sits at complex 17A, waiting ...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Range Visual Info. TECH. Service Release Statu... More

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif KSC-97PC1290

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Adva...

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This i... More

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif KSC-97PC1292

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Adva...

A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This i... More