differences

218 media by topicpage 1 of 3
Glorious news. Triumph of federal efforts. Our administration have at length yielded to the offers long since made to settle our differences with Great-Britain. The war whoop is silenced ... [June 12? 1812].

Glorious news. Triumph of federal efforts. Our administration have at ...

Available also through the Library of Congress web site in two forms: as facsimile page images and as full text in SGML. Printed Ephemera Collection; Portfolio 114, Folder 9.

Principals in coal dispute at White House. Washington, D.C., May 9. A conference marking the first time the president has intervened in a labor dispute since he called together the CIO and the AF of L in an attempt to mediate their fight, met today at the White House to try to settle differences between labor and soft coal operators. Left to right: CIO's John L. Lewis, Van A. Bitner, representing the miners, Philip Murray, for the miners, W.L. Robinson, for the operators, John A. Owens, for the Miners, and L.C. Gunter, for the operators. The back row is unidentified

Principals in coal dispute at White House. Washington, D.C., May 9. A ...

A black and white photo of a group of men. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

Labor Department and CIO at President's coal dispute conference. Washington, D.C., May 9. As the two month old labor dispute of the coal fields moved from New York to the National Capitol today, when the president made a move to settle the differences in the role of mediator, John L. Lewis, President of the C.I.O., charging responsibility for the dispute upon the Labor Department and the administration, Francis Perkins, Secretary of Labor and James Dewey, Labor Department conciliator blaming the operators, all entered the White House this morning to try to settle the dispute before an acute shortage of coal occurs

Labor Department and CIO at President's coal dispute conference. Washi...

A black and white photo of three men and a woman. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

'Step Into Your Place' poster - A group of people standing in front of a line of soldiers

'Step Into Your Place' poster - A group of people standing in front of...

Public domain vintage photo from New Zealand archive, free to use, no copyright restrictions image - Picryl description

Named Governor of Farm Credit Administration. Washington, D.C., Dec. 21. Dr. A.G. Black, Head of the U.S. Department of Agriculture's Marketing and Regulatory Work, has been named by President Roosevelt to be Governor of the Farm Administration. He succeeds F.F. Hill, who resigned because of differences with the Department of Agriculture

Named Governor of Farm Credit Administration. Washington, D.C., Dec. 2...

A black and white photo of a man sitting at a desk. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

Olympic Assoc., who are planning for U.S. part in games at Paris in 1924. The first aim of the conference meeting in Wash. is to iron out differences between sport governing bodies of the country making hormony and preparedness the keybote during the next 18 mths. of preperation for competition against athletes of more than 40 nations at the 8th Olympiad

Olympic Assoc., who are planning for U.S. part in games at Paris in 19...

A black and white photo of a group of men. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

Tennis becomes popular  in Roumania. The introduction of American sports in Europe is a healthy sign. Perhaps the prime ministers and rulers of small belligerent countries can meet on the golf course for a settlement of differences instead of the overworked battlefields [Building on the street, Romania]

Tennis becomes popular in Roumania. The introduction of American spor...

Photographs show scenes in Romania including a man on a tennis court and an unidentified building in Romania. No. 1298: No. 1299: Negative series code stamped on page: LC-C26. On page: no. 1298 (top image) a... More

Interferometer tests standard gages for automobile manufacturers. Washington, D.C. May 28. I.J. Fullmer of the Bureau of Standards is shown with an interferometer by means of which differences in length are measured in terms of wave-lengths of light to the millionth of an inch. A four-inch square precision gage is being compared for length with the Bureau's standard 4 inch, which is rectangular in shape. These gages are tested against the master gages which the different auto manufacturers check their measuring devices so that the parts of the cars separately made can be, when assembled, fitted perfectly. The standard gage and the master gage are shwon being compared in the interferometer, 5/28/37

Interferometer tests standard gages for automobile manufacturers. Wash...

Public domain photograph of laboratory, scientist, free to use, no copyright restrictions image - Picryl description

Arrives at meeting of Green and Lewis. Washington, D.C., Dec. 2. Senator George L. Berry, of Tennessee, enters the room at the Willard Hotel where CIO Head John L. Lewis and A.F. of L. President William Green were holding their peace meeting today. Leaving the room shortly after Berry assured reporters that the only reason for his attendance was to pay his personal respects and ask the rival leaders to compose their differences. 12/2/37

Arrives at meeting of Green and Lewis. Washington, D.C., Dec. 2. Senat...

A man in a suit and hat shaking hands with a man in a top hat. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

PARTY DIFFERENCES FORGOTTEN. WASHINGTON, D.C. APRIL 27. POLITICAL DIFFERENCES WERE FORGOTTEN LAST NIGHT AS MRS. FRANKLIN D. ROOSEVELT AND MRS. ROBERT A. TAFT CHATTED AMIABLY AT LAST NIGHT'S BANQUET OF THE LEAGUE OF WOMEN VOTERS. SENATOR TAFT IS BEING PROMINENTLY MENTIONED AS A PROBABLE REPUBLICAN PRESIDENTIAL CANDIDATE

PARTY DIFFERENCES FORGOTTEN. WASHINGTON, D.C. APRIL 27. POLITICAL DIFF...

A black and white photo of two women sitting at a table. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

A.F. of L. Council meets to consider truce with C.I.O. Washington, D.C., Following a surprising speech over radio networks last night by John L. Lewis, the Executive Council of the American Federation of Labor met this afternoon to consider peace proposals to settle differences between the Congress of Industrial Organizations and their group. Left to right: Matthew Woll, T.A. Rickert, William Green, President of the A.F. of L. H.C. Bates, and Daniel J. Tobin. 3-22-39

A.F. of L. Council meets to consider truce with C.I.O. Washington, D.C...

A group of men standing next to each other. Public domain portrait photograph, free to use, no copyright restrictions image - Picryl description

Aircraft. Naval. The Navy's SBD light dive bomber is the counterpart of the Army's A-24 (Dauntless) with the differences that adapt it to Navy requirements. This Douglas plane is equipped with slotted wing flaps to decrease air speed and obtain greater bombing accuracy. It is more maneuverable than the German Stuka and is capable of carrying heavier bomb loads

Aircraft. Naval. The Navy's SBD light dive bomber is the counterpart o...

Picryl description: Public domain image of a bomber aircraft, military aviation, air forces, free to use, no copyright restrictions.

Aircraft. Naval. The Navy's SBD light dive bomber is the counterpart of the Army's A-24 (Dauntless) with the differences that adapt it to Navy requirements. This Douglas plane is equipped with slotted wing flaps to decrease air speed and obtain greater bombing accuracy. It is more maneuverable than the German Stuka and is capable of carrying heavier bomb loads

Aircraft. Naval. The Navy's SBD light dive bomber is the counterpart o...

Picryl description: Public domain image of a bomber aircraft, military aviation, air forces, free to use, no copyright restrictions.

Production. Aircraft engines. Typifying American democracy at work, four soldiers of the production front assemble an airplane engine for Uncle Sam's soldiers of the battlefront. In this, as in other war factories throughout the U.S., prejudice pertaining to differences of race, creed or color have been scrapped by those who recognize that victory must have priority over intolerance. These four men are assembling cylinder barrels to an engine in a giant Midwest aviation plant. Melrose Park, Buick plant

Production. Aircraft engines. Typifying American democracy at work, fo...

Public domain photograph of aircraft engine, free to use, no copyright restrictions image - Picryl description

President Carter in last ditch effort to convince Coal Companies and Unions to resolve differences

President Carter in last ditch effort to convince Coal Companies and U...

Carter White House Photographs: Presidential Public domain photograph of news, mass media, free to use, no copyright restrictions image - Picryl description

President Carter in last ditch effort to convince Coal Companies and Unions to resolve differences

President Carter in last ditch effort to convince Coal Companies and U...

Carter White House Photographs: Presidential Public domain photograph - White house, President of the United States, free to use, no copyright restrictions image - Picryl description

Jack Shumsky, electrical engineer, prepares to use the forward looking infrared radar (FLIR) system to evaluate and measure temperature differences and sun reflections in the air. He is pouring liquid nitrogen into the cryo-pump to evaluate air out of the FLIR. Shumsky works in the airborne infrared flying laboratory of the Air Force Geophysics Laboratory (AFGL)

Jack Shumsky, electrical engineer, prepares to use the forward looking...

The original finding aid described this photograph as: Base: Hanscom Air Force Base State: Massachusetts (MA) Country: United States Of America (USA) Scene Camera Operator: SSGT William W. Magel Release St... More

CPT Richard Peters discusses the differences between C-130 Hercules and C-160 Transall flight procedures with German Air Force CPT Hans Dieter-Muller, during a training course on the C-160's operation. The Transall is a joint German-French design which serves as the primary strategic tactical support for the German Air Force

CPT Richard Peters discusses the differences between C-130 Hercules an...

The original finding aid described this photograph as: Base: Wunsdorf Air Base, Landsberg Country: West Germany (FRG) Scene Camera Operator: MSGT Don Sutherland Release Status: Released to Public Combined M... More

Members of the Third Brigade, 82nd Airborne Division, march to a classroom to be briefed by German officials on differences between training in Europe and the U.S. The Third Brigade is being shipped to Germany to participate in exercise Reforger '82

Members of the Third Brigade, 82nd Airborne Division, march to a class...

The original finding aid described this photograph as: Subject Operation/Series: REFORGER '82 Base: Fort Bragg State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: STAF... More

Lieutenant Colonel Wolfgang Schmitt of the German Army briefs members of the 3rd Brigade, 82nd Airborne Division, on differences between training in Europe and the US. The Third Brigade is being shipped to Germany to participate in exercise Reforger '82

Lieutenant Colonel Wolfgang Schmitt of the German Army briefs members ...

The original finding aid described this photograph as: Base: Fort Bragg State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: SSG Arnold W. Kalmanson Release Status: Rel... More

Members of the Third Brigade, 82nd Airborne Division, sit in class and listen to a briefing by German officals on differences between training in Europe and the US. The Third Brigade is being shipped to Germany to participate in exercise Reforger '82

Members of the Third Brigade, 82nd Airborne Division, sit in class and...

The original finding aid described this photograph as: Base: Fort Bragg State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: SSG Arnold W. Kalmanson Release Status: Rel... More

Members of the Third Brigade, 82nd Airborne Division, listen to a briefing by German officials on differences between training in Europe and the US. The Third Brigade is being shipped to Germany to participate in exercise Reforger '82

Members of the Third Brigade, 82nd Airborne Division, listen to a brie...

The original finding aid described this photograph as: Base: Fort Bragg State: North Carolina (NC) Country: United States Of America (USA) Scene Camera Operator: SSG Arnold W. Kalmanson Release Status: Rel... More

Uranus - Discrete Cloud, JPL/NASA images

Uranus - Discrete Cloud, JPL/NASA images

Description: (January 14, 1986) This false-color Voyager picture of Uranus shows a discrete cloud seen as a bright streak near the planet's limb. The picture is a highly processed composite of three images obta... More

Range : 12.9 million miles (8.0 million miles) P-29468C This false color Voyager photograph of Uranus shows a discrete cloud seen as a bright streak near the planets limb. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions.  The occasional donut shaped features, including one at the bottom, are shadows cast by dust on the camera  optics. The picture is a highly processed composite of three images. The processing necessary to bring out the faint features on the planet also brings out these camera blemishes. The three seperate images used where shot through violet, blue, and orange filters. Each color image showd the cloud to a different degree; because they were not exposed at the same time , the images were processed to provide a good spatial match. In a true color image, the cloud would be barely discernable; the false color helps to bring out additional details. The different colors imply variations in vertical structure, but as of yet it is not possible to be specific about such differences. One possiblity is that the uranian atmosphere may contain smog like constituents, in which case some color differences may represent  differences in how these molecules are distributed. ARC-1986-AC86-7008

Range : 12.9 million miles (8.0 million miles) P-29468C This false col...

Range : 12.9 million miles (8.0 million miles) P-29468C This false color Voyager photograph of Uranus shows a discrete cloud seen as a bright streak near the planets limb. The cloud visible here is the most pro... More

P-34717 Range: 80,000 kilometers (50,000 miles) This image taken by Voyager 2 of Neptune's largest satellite, Triton, shows an area in the northern hemisphere. The Sun is just above the horizon, so features cast shadows that accentuate height differences. The large, smooth area in the right-hand side of the image shows a single, fresh, impact crater. Otherwise there is no evidence of impacts such as those that have pocked the faces of most of the satellites Voyager 2 has visited. Many low cliffs in the area, bright where they face the Sun, and dark when they face away from it, suggest an intricate history for Triton. The cliffs might be due either to melting of surface materials or, possibly, caused by unusual fluid materials that flowed sometime in Triton's past. ARC-1989-A89-7051

P-34717 Range: 80,000 kilometers (50,000 miles) This image taken by Vo...

P-34717 Range: 80,000 kilometers (50,000 miles) This image taken by Voyager 2 of Neptune's largest satellite, Triton, shows an area in the northern hemisphere. The Sun is just above the horizon, so features cas... More

Water Surface Turbulance and  Internal Waves, Norfolk, VA, USA

Water Surface Turbulance and Internal Waves, Norfolk, VA, USA

STS040-614-047 (5-14 June 1991) --- This image is of the Norfolk, Virginia -- Southern Delmarva Peninsula Southern Chesapeake Bay Area as seen in sunlight. The exposure is adjusted to emphasize the water patt... More

A port bow view of the Spruence class destroyer USS HAYLER (DD-997) and guided missile destroyer USS ARLEIGH BURKE (DDG-51) tied up on the south side of pier 24 at the Norfolk Naval Base. This is a good comparison of the differences in the two classes Navy grayhounds

A port bow view of the Spruence class destroyer USS HAYLER (DD-997) an...

The original finding aid described this photograph as: Base: Hampton Roadstead State: Virginia (VA) Country: United States Of America (USA) Scene Camera Operator: Don S. Montgomery, USN(Ret) Release Status... More

A starboard bow view of the guided missile destroyer USS KIDD (DDG-993) and the Spruence class destroyer USS PETERSON (DD-969) moored together on the north side of pier 24 at the Norfolk Naval Base. This photo shows the differences in the regular destroyer versus the guided missile type. The KIDD is equipped with the more advanced SPS-48 and SPS-49 radar antenna. The Mark 15 missile launcher is aft of the 5 gun mount

A starboard bow view of the guided missile destroyer USS KIDD (DDG-993...

The original finding aid described this photograph as: Base: Hampton Roadstead State: Virginia (VA) Country: United States Of America (USA) Scene Camera Operator: Don S. Montgomery, USN(Ret) Release Status... More

Venus - Comparison of Venera and Magellan Resolutions

Venus - Comparison of Venera and Magellan Resolutions

These radar images show an identical area on Venus (centered at 110 degrees longitude and 64 degrees north latitude) as imaged by the U.S. NASA Magellan spacecraft in 1991 (left) and the U.S.S.R. Venera 15/16 s... More

False Color Processing to Enhance Differences Around Yogi

False Color Processing to Enhance Differences Around Yogi

False Color Processing to Enhance Differences Around Yogi NASA/JPL/Johns Hopkins University

Composition Differences within Saturn Rings

Composition Differences within Saturn Rings

Possible variations in chemical composition from one part of Saturn ring system to another are visible in this archival image from NASA Voyager 2. NASA/JPL

S40-614-047 - STS-040 - Earth observations

S40-614-047 - STS-040 - Earth observations

The original finding aid described this as: Description: This image is of the Norfolk, Virginia -- Southern Delmarva Peninsula Southern Chesapeake Bay Area as seen in sunlight. The exposure is adjusted to emph... More

The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0524

The move of the Shuttle Radar Topography Mission (SRTM) is nearly comp...

The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99,... More

After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0521

After being lifted off the transporter (lower right) in the Space Stat...

After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the prima... More

Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0519

Inside the Space Station Processing Facility, workers watch as an over...

Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved... More

Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0522

Inside the Space Station Processing Facility, the Shuttle Radar Topogr...

Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, c... More

Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0520

Workers inside the Space Station Processing Facility keep watch as an ...

Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand... More

Inside the Space Station Processing Facility, workers at each end of a workstand watch as the Shuttle Radar Topography Mission (SRTM) begins its descent onto it. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0523

Inside the Space Station Processing Facility, workers at each end of a...

Inside the Space Station Processing Facility, workers at each end of a workstand watch as the Shuttle Radar Topography Mission (SRTM) begins its descent onto it. The SRTM, which is the primary payload on missio... More

STS-99 Mission Specialist Janice Voss conducts a system verification test on the Shuttle Radar Topography Mission in the Space Station Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch Sept. 16, 1999. This radar system will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp0658

STS-99 Mission Specialist Janice Voss conducts a system verification t...

STS-99 Mission Specialist Janice Voss conducts a system verification test on the Shuttle Radar Topography Mission in the Space Station Processing Facility. The primary payload on mission STS-99, the SRTM consis... More

In the Space Station Processing Facility, the STS-99 crew pose in front of the Shuttle Radar Topography Mission, the payload for their mission. From left are Mission Specialists Mamoru Mohri of Japan, Janet Lynn Kavandi (Ph.D.), and Janice Voss (Ph.D.); Commander Kevin R. Kregel; Mission Specialist Gerhard Thiele of Germany; and Pilot Dominic L. Pudwill Gorie. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0776

In the Space Station Processing Facility, the STS-99 crew pose in fron...

In the Space Station Processing Facility, the STS-99 crew pose in front of the Shuttle Radar Topography Mission, the payload for their mission. From left are Mission Specialists Mamoru Mohri of Japan, Janet Lyn... More

In the Space Station Processing Facility, STS-99 crew members inspect the Shuttle Radar Topography Mission (SRTM), the payload for their mission. At left is Commander Kevin R. Kregel talking to Mission Specialist Janice Voss (Ph.D.); and Mission Specialists Gerhard Thiele of Germany and Mamoru Mohri of Japan farther back. In the foreground (back to camera) is Mission Specialist Janet Lynn Kavandi (Ph.D.). The final crew member (not shown) is Pilot Dominic L. Pudwill Gorie. Thiele represents the European Space Agency and Mohri represents the National Space Agency of Japan. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0774

In the Space Station Processing Facility, STS-99 crew members inspect ...

In the Space Station Processing Facility, STS-99 crew members inspect the Shuttle Radar Topography Mission (SRTM), the payload for their mission. At left is Commander Kevin R. Kregel talking to Mission Speciali... More

In the Space Station Processing Facility, the STS-99 crew looks over the payload for their mission, the Shuttle Radar Topography Mission (SRTM). Pointing to the SRTM are Commander Kevin R. Kregel and Mission Specialist Gerhard Thiele of Germany. Behind them are (left to right) Pilot Dominic L. Pudwill Gorie and Mission Specialists Mamoru Mohri of Japan and Janet Lynn Kavandi (Ph.D.) The remaining crew member (not shown) is Mission Specialist Janice Voss (Ph.D.) Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0777

In the Space Station Processing Facility, the STS-99 crew looks over t...

In the Space Station Processing Facility, the STS-99 crew looks over the payload for their mission, the Shuttle Radar Topography Mission (SRTM). Pointing to the SRTM are Commander Kevin R. Kregel and Mission Sp... More

The STS-99 crew poses in front of the Shuttle Radar Topography Mission (SRTM) in the Space Station Processing Facility. The crew has been checking out the SRTM, which is the payload for their mission. From left are Mission Specialists Janet Lynn Kavandi (Ph.D.), Mamoru Mohri of Japan, and Gerhard Thiele of Germany; Pilot Dominic L. Pudwill Gorie; Mission Specialist Janice Voss (Ph.D.); and Commander Kevin R. Kregel. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0778

The STS-99 crew poses in front of the Shuttle Radar Topography Mission...

The STS-99 crew poses in front of the Shuttle Radar Topography Mission (SRTM) in the Space Station Processing Facility. The crew has been checking out the SRTM, which is the payload for their mission. From left... More

In the Space Station Processing Facility, STS-99 crew members take part in a simulated flight check of the Shuttle Radar Topography Mission (SRTM), above and behind them. The SRTM is the payload for their mission. The crew members are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn kavandi (Ph.D.), Janice Voss (Ph.D.), Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0775

In the Space Station Processing Facility, STS-99 crew members take par...

In the Space Station Processing Facility, STS-99 crew members take part in a simulated flight check of the Shuttle Radar Topography Mission (SRTM), above and behind them. The SRTM is the payload for their missi... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) clears the railing on the right as a crane moves it toward the open payload bay canister in the background (left). The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0924

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) clears the railing on the right as a crane moves it toward the open payload bay canister in th... More

KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility (OPF) bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0973

KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topogra...

KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility (OPF) bay 2.... More

KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0974

KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topogra...

KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility bay 2. The S... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, a crane lowers the Shuttle Radar Topography Mission (SRTM) toward the opening of the payload bay canister below. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0925

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, a crane lowers the Shuttle Radar Topography Mission (SRTM) toward the opening of the payload bay canister below. The canister will then be... More

KENNEDY SPACE CENTER, FLA. -- A payload transporter, carrying a payload canister with the Shuttle Radar Topography Mission (SRTM) inside, pulls into Orbiter Processing Facility (OPF) bay 2. The SRTM, the primary payload on STS-99, will soon be installed into the payload bay of the orbiter Endeavour already undergoing processing in bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0969

KENNEDY SPACE CENTER, FLA. -- A payload transporter, carrying a payloa...

KENNEDY SPACE CENTER, FLA. -- A payload transporter, carrying a payload canister with the Shuttle Radar Topography Mission (SRTM) inside, pulls into Orbiter Processing Facility (OPF) bay 2. The SRTM, the primar... More

KENNEDY SPACE CENTER, FLA. -- A crane is lowered over the payload canister with the Shuttle Radar Topography Mission (SRTM) inside in Orbiter Processing Facility (OPF) bay 2. The primary payload on STS-99, the SRTM will soon be lifted out of the canister and installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0970

KENNEDY SPACE CENTER, FLA. -- A crane is lowered over the payload cani...

KENNEDY SPACE CENTER, FLA. -- A crane is lowered over the payload canister with the Shuttle Radar Topography Mission (SRTM) inside in Orbiter Processing Facility (OPF) bay 2. The primary payload on STS-99, the ... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is lifted for its move to a payload bay canister on the floor. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0923

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is lifted for its move to a payload bay canister on the floor. The canister will then be moved... More

KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2 to the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0972

KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topograp...

KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2 to... More

KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Processing Facility (OPF) bay 2. Once there, the SRTM, the primary payload on STS-99, will be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0968

KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttl...

KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Process... More

KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2. The SRTM will soon be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0971

KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topograp...

KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2. T... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele look over part of the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Also taking part in the CEIT are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janice Voss (Ph.D.) and Mamoru Mohri. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0999

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele look over part of the Shuttle Radar Topography Mission (SRTM), pri... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, members of the STS-99 crew look over the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Participating are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D), Mamoru Mohri, and Gerhard P.J. Thiele. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0997

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, memb...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, members of the STS-99 crew look over the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (left center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D.) look over equipment during a Crew Equipment Interface Test (CEIT). The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. Others taking part are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele, who is with the European Space Agency. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp1001

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (left center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D... More

In the Orbiter Processing Facility (OPF) Bay 2, under the watchful eyes of a KSC worker (far left) the STS-99 crew look over equipment as part of a Crew Equipment Interface Test (CEIT). From left (second from right) are Mission Specialists Janet Lynn Kavandi (Ph.D.), Mamoru Mohri, Gerhard P.J. Thiele, and Janice Voss (Ph.D.); behind Voss are Pilot Dominic L. Pudwill Gorie and Commander Kevin R. Kregel. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-99 mission is the Shuttle Radar Topography Mission (SRTM), a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0994

In the Orbiter Processing Facility (OPF) Bay 2, under the watchful eye...

In the Orbiter Processing Facility (OPF) Bay 2, under the watchful eyes of a KSC worker (far left) the STS-99 crew look over equipment as part of a Crew Equipment Interface Test (CEIT). From left (second from r... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Gerhard P.J. Thiele and Janet Lynn Kavandi (Ph.D.) look over part of the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Also taking part in the CEIT are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janice Voss (Ph.D.) and Mamoru Mohri. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0998

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Gerhard P.J. Thiele and Janet Lynn Kavandi (Ph.D.) look over part of the Shuttle Radar Topography Mission (SRTM), pri... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility (OPF), the STS-99 crew take part in a Crew Equipment Interface Test (CEIT). Facing the camera and pointing is Mission Specialist Gerhard P.J. Thiele, who is with the European Space Agency. Other crew members in the OPF are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.), Janice Voss (Ph.D.), and Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-99 mission is the Shuttle Radar Topography Mission (SRTM), a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0996

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility (OPF)...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility (OPF), the STS-99 crew take part in a Crew Equipment Interface Test (CEIT). Facing the camera and pointing is Mission Specialist Gerhard P.J. Thi... More

Under the watchful eyes of a KSC worker (far left), members of the STS-99 crew check out equipment in the Orbiter Processing Facility (OPF) Bay 2. From left are Mission Specialists Mamoru Mohri, Gerhard P.J. Thiele, and Janice Voss (Ph.D.). Mohri represents the National Space Development Agency (NASDA) of Japan, and Thiele the European Space Agency. Other crew members (not shown) are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialist Janet Lynn Kavandi (Ph.D.). The crew are at KSC to take part in a Crew Equipment Interface Test (CEIT), which provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-99 mission is the Shuttle Radar Topography Mission (SRTM), a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0995

Under the watchful eyes of a KSC worker (far left), members of the STS...

Under the watchful eyes of a KSC worker (far left), members of the STS-99 crew check out equipment in the Orbiter Processing Facility (OPF) Bay 2. From left are Mission Specialists Mamoru Mohri, Gerhard P.J. Th... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D.) (right) talk with a KSC worker (left) during a Crew Equipment Interface Test (CEIT). The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. Others taking part are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele, who is with the European Space Agency. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp1000

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Mamoru Mohri (center), who is with the National Space Development Agency (NASDA) of Japan, and Janice Voss (Ph.D.) (r... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is nestled in the cargo bay of the orbiter Endeavour just before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR KSC-99pp1008

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a ra...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is nestled in the cargo bay of the orbiter Endeavour just before door clos... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is ready to be stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR KSC-99pp1009

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a ra...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is ready to be stored in the payload bay of the orbiter Endeavour before d... More

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR KSC-99pp1010

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a ra...

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is stored in the payload bay of the orbiter Endeavour before door closure.... More

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is now in its closed position inside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1368

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter P...

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is now in its closed position inside th... More

KENNEDY SPACE CENTER, FLA. -- Viewed end to end, the interior of orbiter Endeavour's payload bay can be seen with its cargo (center and right) in place, before the close of its payload bay doors. The Ku-band antenna (lower right) is now in its closed position inside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1369

KENNEDY SPACE CENTER, FLA. -- Viewed end to end, the interior of orbit...

KENNEDY SPACE CENTER, FLA. -- Viewed end to end, the interior of orbiter Endeavour's payload bay can be seen with its cargo (center and right) in place, before the close of its payload bay doors. The Ku-band an... More

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is still in the open position, outside the payload bay. Endeavour is expected to roll over to the Vehicle Assembly Building in three days for mating to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1367

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter P...

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour waits in the Orbiter Processing Facility bay 2 for the closing of its payload bay doors. The Ku-band antenna (upper right) is still in the open position, outside ... More

KENNEDY SPACE CENTER, FLA. -- Workers at KSC lead the way as Orbiter Endeavour, on an orbiter transfer vehicle, rolls from the Orbiter Processing Facility to the Vehicle Assembly Building, where it will be mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1371

KENNEDY SPACE CENTER, FLA. -- Workers at KSC lead the way as Orbiter E...

KENNEDY SPACE CENTER, FLA. -- Workers at KSC lead the way as Orbiter Endeavour, on an orbiter transfer vehicle, rolls from the Orbiter Processing Facility to the Vehicle Assembly Building, where it will be mate... More

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour aims its nose toward the Vehicle Assembly Building (left) where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1374

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour aims its nose toward t...

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour aims its nose toward the Vehicle Assembly Building (left) where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay... More

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls inside the Vehicle Assembly Building where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1373

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls inside the Vehic...

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls inside the Vehicle Assembly Building where it will be lifted to vertical and mated to the external tank and solid rocket boosters in high bay 1. Space Shutt... More

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls out of the Orbiter Processing Facility bay 2 for transfer to the Vehicle Assembly Building. There it will be mated to the external tank and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1370

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls out of the Orbit...

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls out of the Orbiter Processing Facility bay 2 for transfer to the Vehicle Assembly Building. There it will be mated to the external tank and solid rocket boo... More

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls into the Vehicle Assembly Building on its orbiter transfer vehicle. In high bay 1 it will be mated to the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000 at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1372

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls into the Vehicle...

KENNEDY SPACE CENTER, FLA. -- Orbiter Endeavour rolls into the Vehicle Assembly Building on its orbiter transfer vehicle. In high bay 1 it will be mated to the external tank and solid rocket boosters. Space Shu... More

KENNEDY SPACE CENTER, FLA. -- In high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on right), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1383

KENNEDY SPACE CENTER, FLA. -- In high bay 1 of the VAB, the orbiter En...

KENNEDY SPACE CENTER, FLA. -- In high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on right), and the solid rocket boosters. Space Shuttle Endeavour is targeted fo... More

KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lifted to a vertical position before being mated to the external tank (bottom of photo) and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1381

KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lif...

KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lifted to a vertical position before being mated to the external tank (bottom of photo) and solid rocket boosters in high bay 1. Space Shuttle ... More

KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on left), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1382

KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in h...

KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on left), and the solid rocket boosters. Spa... More

KENNEDY SPACE CENTER, FLA. -- Lights frame the orbiter Endeavour as it is lowered onto the platform for mating with the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1385

KENNEDY SPACE CENTER, FLA. -- Lights frame the orbiter Endeavour as it...

KENNEDY SPACE CENTER, FLA. -- Lights frame the orbiter Endeavour as it is lowered onto the platform for mating with the external tank and solid rocket boosters. Space Shuttle Endeavour is targeted for launch on... More

KENNEDY SPACE CENTER, FLA. -- Viewed from the ground level in high bay 1 of the VAB, the orbiter Endeavour seems to float in mid-air as it is lowered for mating with the external tank and solid rocket boosters behind and below it. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1384

KENNEDY SPACE CENTER, FLA. -- Viewed from the ground level in high bay...

KENNEDY SPACE CENTER, FLA. -- Viewed from the ground level in high bay 1 of the VAB, the orbiter Endeavour seems to float in mid-air as it is lowered for mating with the external tank and solid rocket boosters ... More

The Joint Airlock Module swings into position near the top of the Operations and Checkout Building to move toward the vacuum chamber at right. Workers alongside the chamber watch the airlock’s progress. The airlock is being tested for leaks. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module provides a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1405

The Joint Airlock Module swings into position near the top of the Oper...

The Joint Airlock Module swings into position near the top of the Operations and Checkout Building to move toward the vacuum chamber at right. Workers alongside the chamber watch the airlock’s progress. The air... More

Workers inside the vacuum chamber in the Operations and Checkout Building watch as an overhead crane lowers the Joint Airlock Module inside. The airlock is being tested for leaks. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module provides a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1407

Workers inside the vacuum chamber in the Operations and Checkout Build...

Workers inside the vacuum chamber in the Operations and Checkout Building watch as an overhead crane lowers the Joint Airlock Module inside. The airlock is being tested for leaks. The module is the gateway from... More

The Joint Airlock Module is fully lowered into the vacuum chamber inside the Operations and Checkout Building. Workers on either side check its position. The airlock is being tested for leaks. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module provides a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1408

The Joint Airlock Module is fully lowered into the vacuum chamber insi...

The Joint Airlock Module is fully lowered into the vacuum chamber inside the Operations and Checkout Building. Workers on either side check its position. The airlock is being tested for leaks. The module is the... More

The overhead crane lowers the Joint Airlock Module inside the vacuum chamber in the Operations and Checkout Building. The airlock is being tested for leaks. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module provides a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1406

The overhead crane lowers the Joint Airlock Module inside the vacuum c...

The overhead crane lowers the Joint Airlock Module inside the vacuum chamber in the Operations and Checkout Building. The airlock is being tested for leaks. The module is the gateway from which crew members abo... More

In the Operations and Checkout Building, the Joint Airlock Module, now in vertical position, is ready to be moved into a vacuum chamber for testing. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module is specially designed to accommodate both suits, providing a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1403

In the Operations and Checkout Building, the Joint Airlock Module, now...

In the Operations and Checkout Building, the Joint Airlock Module, now in vertical position, is ready to be moved into a vacuum chamber for testing. The module is the gateway from which crew members aboard the ... More

The Joint Airlock Module waits on a stand in the Operations and Checkout Building to be lifted and moved into a vacuum chamber for testing. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module is specially designed to accommodate both suits, providing a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1402

The Joint Airlock Module waits on a stand in the Operations and Checko...

The Joint Airlock Module waits on a stand in the Operations and Checkout Building to be lifted and moved into a vacuum chamber for testing. The module is the gateway from which crew members aboard the Internati... More

In the Operations and Checkout Building, an overhead crane lifts the Joint Airlock Module to move it to a vacuum chamber for testing. The module is the gateway from which crew members aboard the International Space Station (ISS) will enter and exit the 470-ton orbiting research facility. The airlock is a critical element of the ISS because of design differences between American and Russian spacesuits. The Joint Airlock Module is specially designed to accommodate both suits, providing a chamber where astronauts from every nation can suit up for space walks to conduct maintenance and construction work or to do science experiments outside the Station. The Space Shuttle Atlantis will carry the airlock to orbit on mission STS-104, the 10th International Space Station flight, currently targeted for liftoff in May 2001. The Shuttle crew will secure the airlock to the right side of Unity, the American-built connecting node that currently comprises one-third of the current Space Station, along with the Russian modules Zarya and Zvezda KSC-00pp1404

In the Operations and Checkout Building, an overhead crane lifts the J...

In the Operations and Checkout Building, an overhead crane lifts the Joint Airlock Module to move it to a vacuum chamber for testing. The module is the gateway from which crew members aboard the International S... More

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II rocket waits to be mated to four solid rocket boosters (behind the Delta). The rocket will launch the MAP instrument into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP mission will examine conditions in the early universe by measuring temperature differences in cosmic microwave background radiation, which is the radiant heat left over from the Big Bang. The properties of this radiation directly reflect conditions in the early universe. MAP is scheduled to launch June 30 at 3:46:46 p.m. EDT KSC-01pp1032

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral A...

KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II rocket waits to be mated to four solid rocket boosters (behind the Delta). The rocket will launch the MAP ins... More

KENNEDY SPACE CENTER, FLA. -- A solid rocket booster is lifted up the gantry at Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be mated to the Delta II rocket that will launch the MAP instrument into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP mission will examine conditions in the early universe by measuring temperature differences in cosmic microwave background radiation, which is the radiant heat left over from the Big Bang. The properties of this radiation directly reflect conditions in the early universe. MAP is scheduled to launch June 30 at 3:46:46 p.m. EDT KSC-01pp1029

KENNEDY SPACE CENTER, FLA. -- A solid rocket booster is lifted up the ...

KENNEDY SPACE CENTER, FLA. -- A solid rocket booster is lifted up the gantry at Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be mated to the Delta II rocket that will launch the MAP instr... More

KENNEDY SPACE CENTER, FLA. -- A second solid rocket booster is lifted up the gantry at Launch Complex 17-B, Cape Canaveral Air Force Station. The SRBs will be mated to the Delta II rocket that will launch the MAP instrument into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP mission will examine conditions in the early universe by measuring temperature differences in cosmic microwave background radiation, which is the radiant heat left over from the Big Bang. The properties of this radiation directly reflect conditions in the early universe. MAP is scheduled to launch June 30 at 3:46:46 p.m. EDT KSC-01pp1030

KENNEDY SPACE CENTER, FLA. -- A second solid rocket booster is lifted ...

KENNEDY SPACE CENTER, FLA. -- A second solid rocket booster is lifted up the gantry at Launch Complex 17-B, Cape Canaveral Air Force Station. The SRBs will be mated to the Delta II rocket that will launch the M... More

Surface Composition Differences in Martian Canyon

Surface Composition Differences in Martian Canyon

Color differences in this daytime infrared image taken by the camera on NASA Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface. NASA/JPL/Ar... More

Surface Composition Differences in Martian Canyon

Surface Composition Differences in Martian Canyon

Color differences in this daytime infrared image taken by NASA Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface. NASA/JPL/Arizona State University

US Marine Corps (USMC) Marines from F Company (F CO), 2nd Battalion, 6th Marine Regiment (2/6), 2nd Marine Division (MAR DIV), checkout the differences of the 81mm Mortar from the Japanese Ground Self Defense Force (JGSDF), 20th Infantry Regiment, during a static weapons display from both forces in the Ojojibara maneuver area at Sendai, Japan (JPN), as a part of Exercise FOREST LIGHT 2004. FOREST LIGHT 2004 is a bilateral training exercise between the US Marine Corps (USMC) and the Japanese Ground Self Defense Forces (JGSDF)

US Marine Corps (USMC) Marines from F Company (F CO), 2nd Battalion, 6...

The original finding aid described this photograph as: Base: Ojojibara State: Tohoku Country: Japan (JPN) Scene Camera Operator: LCPL James J. Vooris, USMC Release Status: Released to Public Combined Milit... More

US Marine Corps (USMC) Marines from F Company (F CO), 2nd Battalion, 6th Marine Regiment (2/6), 2nd Marine Division (MAR DIV), checkout the differences of the 81mm Mortar from the Japanese Ground Self Defense Force (JGSDF), 20th Infantry Regiment, during a static weapons display from both forces in the Ojojibara maneuver area at Sendai, Japan (JPN), as a part of Exercise FOREST LIGHT 2004. FOREST LIGHT 2004 is a bilateral training exercise between the US Marine Corps (USMC) and the Japanese Ground Self Defense Forces (JGSDF)

US Marine Corps (USMC) Marines from F Company (F CO), 2nd Battalion, 6...

The original finding aid described this photograph as: Base: Ojojibara State: Tohoku Country: Japan (JPN) Scene Camera Operator: LCPL James J. Vooris, USMC Release Status: Released to Public Combined Milit... More

Seasonal Differences - NASA Titan images

Seasonal Differences - NASA Titan images

Seasonal Differences NASA/JPL/Space Science Institute

KENNEDY SPACE CENTER, FLA. -  In the Orbiter Processing Facility, several workers check out the first Reinforced Carbon-Carbon panel to be installed on the left wing leading edge on Discovery.  Second from right is Danny Wyatt, NASA Quality Assurance specialist; on the left is Dave Fuller, technician; behind Wyatt is John Legere, NASA Quality Assurance specialist.   The RCC panels are mechanically attached to the wing with spars, a series of floating joints to reduce loading on the panels caused by wing deflections. The T-seals between each wing leading edge panel allow for lateral motion and thermal expansion differences between the RCC and the orbiter wing.  Discovery has been named as the orbiter to fly on the first Return to Flight mission, STS-114. KSC-04pd0531

KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, seve...

KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, several workers check out the first Reinforced Carbon-Carbon panel to be installed on the left wing leading edge on Discovery. Second from righ... More

CAPE CANAVERAL, Fla. – Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla., participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida.    GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett KSC-2011-6750

CAPE CANAVERAL, Fla. – Joel Tumbiolo, launch weather officer, 45th Wea...

CAPE CANAVERAL, Fla. – Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla., participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news c... More

CAPE CANAVERAL, Fla. – Ed Weiler, NASA associate administrator, Science Mission Directorate, participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida.    GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett KSC-2011-6749

CAPE CANAVERAL, Fla. – Ed Weiler, NASA associate administrator, Scienc...

CAPE CANAVERAL, Fla. – Ed Weiler, NASA associate administrator, Science Mission Directorate, participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site... More

CAPE CANAVERAL, Fla. – John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo., participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida.    GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett KSC-2011-6751

CAPE CANAVERAL, Fla. – John Henk, GRAIL program manager, Lockheed Mart...

CAPE CANAVERAL, Fla. – John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo., participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA ... More

CAPE CANAVERAL, Fla. – A Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are George Diller, NASA Public Affairs; Ed Weiler, NASA associate administrator, Science Mission Directorate; Tim Dunn, NASA launch director for the agency’s Launch Services Program; Vernon Thorp, program manager, NASA Missions, United Launch Alliance; David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory; John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo.; and Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida.    GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett KSC-2011-6752

CAPE CANAVERAL, Fla. – A Gravity Recovery and Interior Laboratory (GRA...

CAPE CANAVERAL, Fla. – A Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are George Dill... More

CAPE CANAVERAL, Fla. – News media participate in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. On the dais, panelist from left are Ed Weiler, NASA associate administrator, Science Mission Directorate; Tim Dunn, NASA launch director for the agency’s Launch Services Program; Vernon Thorp, program manager, NASA Missions, United Launch Alliance; David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory; John Henk, GRAIL program manager, Lockheed Martin Space Systems, Denver, Colo.; and Joel Tumbiolo, launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Fla. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida.    GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett KSC-2011-6753

CAPE CANAVERAL, Fla. – News media participate in the Gravity Recovery ...

CAPE CANAVERAL, Fla. – News media participate in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. ... More

CAPE CANAVERAL, Fla. – David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory, participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida.    GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett KSC-2011-6748

CAPE CANAVERAL, Fla. – David Lehman, GRAIL project manager, NASA’s Jet...

CAPE CANAVERAL, Fla. – David Lehman, GRAIL project manager, NASA’s Jet Propulsion Laboratory, participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Sit... More

Previous

of 3

Next