encapsulation

720 media by topicpage 1 of 8
Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) prepare the Tracking and Data Relay Satellite (TDRS-H) above them for electrical testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit KSC00pp0713

Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-...

Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) prepare the Tracking and Data Relay Satellite (TDRS-H) above them for electrical testing. The TDRS is scheduled to be launched from CCAFS... More

KENNEDY SPACE CENTER, FLA. --  Workers lower the suspended TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pp1642

KENNEDY SPACE CENTER, FLA. -- Workers lower the suspended TDRS-J spac...

KENNEDY SPACE CENTER, FLA. -- Workers lower the suspended TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, cu... More

The logo for the Tracking and Data Relay Satellite (TDRS-H) is predominantly displayed on the fairing that will encapsulate the satellite for launch. The fairing is in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) where TDRS is undergoing testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit KSC-00pp0714

The logo for the Tracking and Data Relay Satellite (TDRS-H) is predomi...

The logo for the Tracking and Data Relay Satellite (TDRS-H) is predominantly displayed on the fairing that will encapsulate the satellite for launch. The fairing is in KSC’s Spacecraft Assembly and Encapsulatio... More

In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at right sits while one-half of the fairing (left) is moved closer to it. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit KSC00pp0749

In the Spacecraft Assembly and Encapsulation Facility, the Tracking an...

In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at right sits while one-half of the fairing (left) is moved closer to it. After encapsulation in the fairing... More

KENNEDY SPACE CENTER, FLA. --  Workers make adjustments on the first part of the fairing around the TDRS-J satellite before encapsulation continues. The satellite is scheduled to be launched aboard a Lockheed Martin Atlas IIA-Centaur rocket from Launch Complex 36-A, Cape Canaveral Air Force Station, Fla., on Dec. 4.  The third in a series of telemetry satellites, TDRS-J will help replenish the current constellation of geosynchronous TDRS satellites. The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope. This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. KSC-02pd1776

KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the first p...

KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the first part of the fairing around the TDRS-J satellite before encapsulation continues. The satellite is scheduled to be launched aboard a Lockheed M... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) make final adjustments on the nose fairing surrounding the Tracking and Data Relay Satellite-I (TDRS-I). The second in a new series of telemetry satellites, TDRS-I replenishes the existing on-orbit fleet of six spacecraft. The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope. This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. Launch of TDRS-I is scheduled for March 8 aboard a Lockheed Martin Atlas IIA rocket from Pad 36-A, Cape Canaveral Air Force Station KSC-02pd0174

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) make final adjustments on the nose fairing surrounding the Tracking and Data Relay Satellite-I (TDRS-I). Th... More

KENNEDY SPACE CENTER, FLA. -  A crane is lifted from the SLF to attach to the container with the TDRS-J spacecraft inside (at left). The container will be placed on a transporter and taken to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pd1574

KENNEDY SPACE CENTER, FLA. - A crane is lifted from the SLF to attach...

KENNEDY SPACE CENTER, FLA. - A crane is lifted from the SLF to attach to the container with the TDRS-J spacecraft inside (at left). The container will be placed on a transporter and taken to the Spacecraft Ass... More

The Mars Odyssey spacecraft is removed from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. Mars Odyssey will be moved on a transport trailer from KSC’s Shuttle Landing Facility to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. In the SAEF it will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0033

The Mars Odyssey spacecraft is removed from the Air Force C-17 cargo a...

The Mars Odyssey spacecraft is removed from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. Mars Odyssey will be move... More

KENNEDY SPACE CENTER, FLA. -- Workers prepare to lift the TDRS-J spacecraft for its move to a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pp1638

KENNEDY SPACE CENTER, FLA. -- Workers prepare to lift the TDRS-J space...

KENNEDY SPACE CENTER, FLA. -- Workers prepare to lift the TDRS-J spacecraft for its move to a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before ... More

The crated Tracking and Data Relay Satellite (TDRS-H) is pulled inside the Spacecraft Assembly and Encapsulation Facility (SAEF-2) after its arrival at KSC. The TDRS will undergo testing in the SAEF-2. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket KSC-00pp0711

The crated Tracking and Data Relay Satellite (TDRS-H) is pulled inside...

The crated Tracking and Data Relay Satellite (TDRS-H) is pulled inside the Spacecraft Assembly and Encapsulation Facility (SAEF-2) after its arrival at KSC. The TDRS will undergo testing in the SAEF-2. One of t... More

Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) conduct electrical testing on the Tracking and Data Relay Satellite (TDRS-H) above them. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit KSC-00pp0715

Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-...

Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) conduct electrical testing on the Tracking and Data Relay Satellite (TDRS-H) above them. The TDRS is scheduled to be launched from CCAFS ... More

At the Shuttle Landing Facility, the crated Tracking and Data Relay Satellite (TDRS-H) is placed onto a transporter for its move to the Spacecraft Assembly and Encapsulation Facility (SAEF-2) for testing. The TDRS is one of three (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif. The latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket KSC-00pp0708

At the Shuttle Landing Facility, the crated Tracking and Data Relay Sa...

At the Shuttle Landing Facility, the crated Tracking and Data Relay Satellite (TDRS-H) is placed onto a transporter for its move to the Spacecraft Assembly and Encapsulation Facility (SAEF-2) for testing. The T... More

KENNEDY SPACE CENTER, FLA. --  The TDRS-J satellite sits between the two halves of the fairing before encapsulation for launch. The satellite is scheduled to be launched aboard a Lockheed Martin Atlas IIA-Centaur rocket from Launch Complex 36-A, Cape Canaveral Air Force Station, Fla., on Dec. 4.  The third in a series of telemetry satellites, TDRS-J will help replenish the current constellation of geosynchronous TDRS satellites. The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope. This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. KSC-02pd1778

KENNEDY SPACE CENTER, FLA. -- The TDRS-J satellite sits between the t...

KENNEDY SPACE CENTER, FLA. -- The TDRS-J satellite sits between the two halves of the fairing before encapsulation for launch. The satellite is scheduled to be launched aboard a Lockheed Martin Atlas IIA-Centa... More

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, the INTELSAT V spacecraft is enclosed in a protective shroud for transport from Hangar AO to the Explosive Safe Facility for final servicing and encapsulation.  This is the first of a new series of INTELSAT spacecraft. The INTELSAT V is the largest and highest-capacity commercial communications satellite built to date. The 4,300-pound spacecraft is scheduled for launch on an Atlas Centaur rocket from Complex 36 no earlier than December 4. It will operate in geosynchronous orbit over the Atlantic Ocean. Photo Credit: NASA KSC-80P-0323

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida...

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, the INTELSAT V spacecraft is enclosed in a protective shroud for transport from Hangar AO to the Explosive Safe Facility for final servici... More

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, the paylaod fairing of the Delta 182 launch vehicle is carefully moved into place as encapsulation procedures continue on the Palapa B2-P communications satellite at Launch Complex 17, Pad B. Palapa is scheduled for launch from Cape Canaveral for the government of Indonesia. Liftoff of Delta 182 and Palapa is scheduled for March 20. Photo Credit: NASA KSC-87PC-0266

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida...

CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, the paylaod fairing of the Delta 182 launch vehicle is carefully moved into place as encapsulation procedures continue on the Palapa B2-P ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, technicians in the Spacecraft Assembly and Encapsulation Facility-2 SAEF-2) lift the Solar and Heliospheric Observatory SOHO after its removal from the crate it was shipped in from France. The SOHO spacecraft will carry a complement of 11 instruments from NASA and the European Space Agency ESA to study the origin of the energy within the sun which reaches the sun’s surface. SOHO was manufactured in France by Matra Marconi under a contract with ESA. The observatory will receive final testing and preparations for launch in SAEF-2. SOHO is targeted for launch on an Atlas IIAS from Launch Complex 36, Cape Canaveral Air Station, between Oct. 31 and Nov. 7, 1995. Photo Credit: NASA KSC-95PC-1159

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, tec...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, technicians in the Spacecraft Assembly and Encapsulation Facility-2 SAEF-2) lift the Solar and Heliospheric Observatory SOHO after its removal ... More

Solar and Heliospheric Observatory Preparations

Solar and Heliospheric Observatory Preparations

Fully assembled, checked out and fueled for flight, the Solar and Heliospheric Observatory (SOHO) is ready for encapsulation in its protective payload fairing. Note the protective thermal blankets encasing the ... More

CAPE CANAVERAL, Fla. -- In the Spacecraft Assembly and Encapsulation Facility-2 at NASA's Kennedy Space Center in Florida, Jet Propulsion Laboratory technicians are closing up the metal "petals" of the Mars Pathfinder lander. The Sojourner rover is visible on one of the three petals. Photo Credit: NASA KSC-96PC-1130

CAPE CANAVERAL, Fla. -- In the Spacecraft Assembly and Encapsulation F...

CAPE CANAVERAL, Fla. -- In the Spacecraft Assembly and Encapsulation Facility-2 at NASA's Kennedy Space Center in Florida, Jet Propulsion Laboratory technicians are closing up the metal "petals" of the Mars Pat... More

Workers take off the protective covering on the propulsion module for the Cassini spacecraft after uncrating the module at KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The extended journey of 6.7 years to Saturn and the 4-year mission for Cassini once it gets there will require the spacecraft to carry a large amount of propellant for inflight trajectory-correction maneuvers and attitude control, particularly during the science observations. The propulsion module has redundant 445-newton main engines that burn nitrogen tetraoxide and monomethyl-hydrazine for main propulsion and 16 smaller 1-newton engines that burn hydrazine to control attitude and to correct small deviations from the spacecraft flight path. Cassini will be launched on a Titan IVB/Centaur expendable launch vehicle. Liftoff is targeted for October 6 from Launch Complex 40, Cape Canaveral Air Station KSC-97pc402

Workers take off the protective covering on the propulsion module for ...

Workers take off the protective covering on the propulsion module for the Cassini spacecraft after uncrating the module at KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The extended journey o... More

With its prelaunch processing completed, the GOES-K advanced weather satellite awaits encapsulation in the Atlas 1 payload fairing, seen at left rear. GOES-K was prepared for launch at the Astrotech Space Operations LP facility in Titusville. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> aboard a Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) from Launch Complex 36, Pad B, Cape Canaveral Air Station. The launch window opens at 1:50 a.m. and extends to 3:09 a.m. EDT. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc635

With its prelaunch processing completed, the GOES-K advanced weather s...

With its prelaunch processing completed, the GOES-K advanced weather satellite awaits encapsulation in the Atlas 1 payload fairing, seen at left rear. GOES-K was prepared for launch at the Astrotech Space Opera... More

Prelaunch processing begins on the Advanced  Composition Explorer (ACE) spacecraft in the Spacecraft Assembly and Encapsulation  Facility-2 (SAEF-2). ACE will investigate the origin and evolution of solar phenomenon,  the formation of the solar corona, solar flares and the acceleration of the solar wind.  ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory. The  spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8  rocket from Space Launch Complex 17, Pad A KSC-97PC905

Prelaunch processing begins on the Advanced Composition Explorer (ACE...

Prelaunch processing begins on the Advanced Composition Explorer (ACE) spacecraft in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). ACE will investigate the origin and evolution of solar pheno... More

Workers in the Spacecraft Assembly and  Encapsulation Facility-2 (SAEF-2) begin prelaunch processing of the Advanced  Composition Explorer (ACE) which will investigate the origin and evolution of solar  phenomenon, the formation of the solar corona, solar flares and the acceleration of the  solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory.  The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8  rocket from Space Launch Complex 17, Pad A KSC-97PC904

Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF...

Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) begin prelaunch processing of the Advanced Composition Explorer (ACE) which will investigate the origin and evolution of solar phenome... More

Workers from the Johns Hopkins University’s  Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS)  on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly  and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and  Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin  and evolution of solar phenomenon, the formation of the solar corona, solar flares and  the acceleration of the solar wind. ACE was developed for NASA by the APL. The  spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8  rocket from Space Launch Complex 17, Pad A KSC-97PC1013

Workers from the Johns Hopkins University’s Applied Physics Laborator...

Workers from the Johns Hopkins University’s Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assemb... More

Applied Physics Laboratory Engineer Cliff  Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins  University install solar array panels on the Advanced Composition Explorer (ACE) in  KSC’s Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a  Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy  particles of solar origin and high-energy galactic particles for a better understanding of  the formation and evolution of the solar system as well as the astrophysical processes  involved. The ACE observatory will be placed into an orbit almost a million miles (1.5  million kilometers) away from the Earth, about 1/100 the distance from the Earth to the  Sun. The collecting power of instrumentation aboard ACE is at least 100 times more  sensitive than anything previously flown to collect similar data by NASA KSC-97PC1079

Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engin...

Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC’... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University install solar array panels on the Advanced  Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II. The panel on which they are working is identical to the panel (one of four) seen in the  foreground on the ACE spacecraft. Scheduled for launch on a Delta II rocket from Cape  Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin  and high-energy galactic particles for a better understanding of the formation and  evolution of the solar system as well as the astrophysical processes involved. The ACE  observatory will be placed into an orbit almost a million miles (1.5 million kilometers)  away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting  power of instrumentation aboard ACE is at least 100 times more sensitive than anything  previously flown to collect similar data by NASA KSC-97PC1080

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University assist in guiding the Advanced Composition  Explorer (ACE) as it is hoisted over a platform for solar array installation in KSC’s  Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II  rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles  of solar origin and high-energy galactic particles. The ACE observatory will contribute to  the understanding of the formation and evolution of the solar system as well as the  astrophysical processes involved. The collecting power of instruments aboard ACE is 10  to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1077

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in guiding the Advanced Composition Explorer (ACE) as it is hoisted over a platform for solar array installation in KS... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University assist in leveling and orienting the Advanced  Composition Explorer (ACE) as it is seated on a platform for solar array installation in  KSC’s Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a  Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy  particles of solar origin and high-energy galactic particles. The ACE observatory has six  high-resolution particle detection sensors and three monitoring instruments. The  collecting power of instrumentation aboard ACE is at least 100 times more sensitive than  anything previously flown to collect similar data by NASA KSC-97PC1078

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in leveling and orienting the Advanced Composition Explorer (ACE) as it is seated on a platform for solar array instal... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University test solar array deployment of the Advanced  Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). The wire hanging from the ceiling above the black solar array panel is used  for "g-negation," which takes the weight off of the panel’s hinges to simulate zero  gravity, mimicking deployment in space. Scheduled for launch on a Delta II rocket from  Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar  origin and high-energy galactic particles for a better understanding of the formation and  evolution of the solar system as well as the astrophysical processes involved. The  collecting power of instrumentation aboard ACE is at least 100 times more sensitive than  anything previously flown to collect similar data by NASA KSC-97PC1129

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University test solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facilit... More

An Applied Physics Laboratory engineer from  Johns Hopkins University tests for true perpendicular solar array deployment of the  Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and  Encapsulation Facility-II (SAEF-II). The white magnetometer boom seen across the solar  array panel will deploy the panel once in space. Scheduled for launch on a Delta II rocket  from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of  solar origin and high-energy galactic particles. The ACE observatory will be placed into  an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100  the distance from the Earth to the Sun KSC-97PC1128

An Applied Physics Laboratory engineer from Johns Hopkins University ...

An Applied Physics Laboratory engineer from Johns Hopkins University tests for true perpendicular solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulat... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University test for true perpendicular solar array  deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft  Assembly and Encapsulation Facility-II (SAEF-II). The white magnetometer boom seen  across the solar array panel will deploy the panel once in space. Scheduled for launch on a  Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy  particles of solar origin and high-energy galactic particles. The ACE observatory will be  placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth,  about 1/100 the distance from the Earth to the Sun KSC-97PC1127

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University test for true perpendicular solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly a... More

Applied Physics Laboratory engineers and  technicians from Johns Hopkins University test solar array deployment of the Advanced  Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). The wire hanging from the ceiling above the black solar array panel is used  for "g-negation," which takes the weight off of the panel’s hinges to simulate zero  gravity, mimicking deployment in space. Scheduled for launch on a Delta II rocket from  Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar  origin and high-energy galactic particles. The collecting power of instruments aboard  ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by  NASA KSC-97PC1126

Applied Physics Laboratory engineers and technicians from Johns Hopki...

Applied Physics Laboratory engineers and technicians from Johns Hopkins University test solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facilit... More

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1228

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin te...

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air S... More

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1227

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin te...

The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air S... More

Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1230

Extension of the solar panels is tested on the Advanced Composition Ex...

Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from... More

The Advanced Composition Explorer (ACE) undergoes final prelaunch processing in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being transported to Pad A at Launch Complex 17, Cape Canaveral Air Station, for mating to the Delta II launch vehicle. This photo was taken during a news media opportunity. The worker at right is installing protective covering over one of the spacecraft’s solar arrays. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. Launch is targeted for Aug. 24 KSC-97PC1236

The Advanced Composition Explorer (ACE) undergoes final prelaunch proc...

The Advanced Composition Explorer (ACE) undergoes final prelaunch processing in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being transported to Pad A at Launch Complex 17, Cape Canav... More

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1234

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), ...

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A.... More

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA KSC-97PC1232

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), ...

In KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A.... More

The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket KSC-98pc1048

The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assem...

The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 carg... More

The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket KSC-98pc1047

The Mars Climate Orbiter spacecraft is moved onto a flatbed for transp...

The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 ... More

Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) prepare a lifting device they will use to remove the Mars Climate Orbiter from its container (behind the workers). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1078

Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (S...

Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) prepare a lifting device they will use to remove the Mars Climate Orbiter from its container (behind the workers). The Mars Climate O... More

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1085

Technicians check the connections on the workstand holding the Mars Cl...

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will p... More

Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) oversee the removal of the Mars Climate Orbiter from its container. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1079

Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (S...

Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) oversee the removal of the Mars Climate Orbiter from its container. The Mars Climate Orbiter is heading for Mars where it will primar... More

Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1083

Technicians lower the Mars Climate Orbiter onto its workstand in the S...

Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its c... More

Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1082

Technicians carefully maneuver the Mars Climate Orbiter toward its wor...

Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primaril... More

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1084

Technicians check the connections on the workstand holding the Mars Cl...

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will p... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1081

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is headi... More

The Mars Climate Orbiter is lifted clear of the top of its container in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1080

The Mars Climate Orbiter is lifted clear of the top of its container i...

The Mars Climate Orbiter is lifted clear of the top of its container in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily suppor... More

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The lander is being transported to the Spacecraft Assembly and Encapsulation Facility-2(SAEF-2) in the KSC Industrial Area for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars Polar Lander spacecraft is planned for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999 KSC-98pc1196

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mar...

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astrona... More

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander awaits testing in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1212

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander awaits testing in ...

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander awaits testing in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station ... More

KENNEDY SPACE CENTER, FLA. --Out of its crate, the Mars Polar Lander is maneuvered inside the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for testing. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1211

KENNEDY SPACE CENTER, FLA. --Out of its crate, the Mars Polar Lander i...

KENNEDY SPACE CENTER, FLA. --Out of its crate, the Mars Polar Lander is maneuvered inside the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for testing. The Mars Polar Lander is targeted for launch ... More

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is uncrated in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1210

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is uncrated in the...

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is uncrated in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station abo... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the protective covering for the Mars Polar Lander is removed so technicians can prepare the Lander for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1236

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the protective covering for the Mars Polar Lander is removed so technicians can prepare the Lander for testing, wh... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1235

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1230

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instrumen... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1231

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is lowered onto a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1233

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is lowered onto a portable stand. The Lander will undergo testing, including a fu... More

KENNEDY SPACE CENTER, FLA.  --  In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1229

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsu...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of th... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is swung out of the way before testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1232

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is swung out of the way before testing, which includes a functional test of the s... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1234

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a func... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians check underneath the Mars Polar Lander during the testing of science instruments. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1339

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians check underneath the Mars Polar Lander during the testing of science instruments. The solar-powered sp... More

KENNEDY SPACE CENTE, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician tests the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1338

KENNEDY SPACE CENTE, FLA. -- In the Spacecraft Assembly and Encapsulat...

KENNEDY SPACE CENTE, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician tests the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians test the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1337

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians test the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-p... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander spacecraft is on display for the media, showing an almost fully installed set of components for its launch planned for Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1353

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander spacecraft is on display for the media, showing an almost fully installed set of components ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the camera takes a close look at the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1349

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the camera takes a close look at the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from C... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter is on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II 7425 rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1350

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter is on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing D... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1351

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delt... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (foreground) and the Mars Polar Lander are on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II rocket. It is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1352

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (foreground) and the Mars Polar Lander are on display for the media. The scheduled launch date for the Mars Climate Orb... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is on display during a showing for the media. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1348

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is on display during a showing for the media. The solar-powered spacecraft is targeted for l... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers adjust the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1373

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers adjust the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers move the Mars Polar Lander to a work stand where it will undergo testing of the science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1371

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers move the Mars Polar Lander to a work stand where it will undergo testing of the science instruments and ba... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician checks out the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1372

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician checks out the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science in... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers check out the solar panel on the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1374

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers check out the solar panel on the Mars Polar Lander. The spacecraft is undergoing testing of science instru... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1601

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft s... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians guide the raised Mars Polar Lander to another site. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1600

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians guide the raised Mars Polar Lander to another site. The spacecraft is undergoing testing of science instruments and basic spacec... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians begin to lift the Mars Polar Lander to move it to a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1599

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians begin to lift the Mars Polar Lander to move it to a workstand. The spacecraft is undergoing testing of science instruments and b... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician looks over the Mars Polar Lander before its encapsulation inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1610

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician looks over the Mars Polar Lander before its encapsulation inside the backshell, a protective cove... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians maneuver the backshell, a protective covering, to be placed over the Mars Polar Lander, sitting on the workstand. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1611

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians maneuver the backshell, a protective covering, to be placed over the Mars Polar Lander, sitting on... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander sits on the workstand encapsulated inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1612

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander sits on the workstand encapsulated inside the backshell, a protective cover. The solar-power... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is in mate-to-cruise stage. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1608

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is in mate-to-cruise stage. The solar-powered spacecraft, targeted for launch from Cape Cana... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician prepares the Mars Polar Lander for encapsulation inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1609

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician prepares the Mars Polar Lander for encapsulation inside the backshell, a protective cover. The so... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1606

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing tes... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician takes part in testing science instruments and basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1607

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician takes part in testing science instruments and basic spacecraft subsystems on the Mars Polar Lande... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians prepare the Mars Polar Lander for encapsulation inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1613

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians prepare the Mars Polar Lander for encapsulation inside the backshell, a protective cover. The sola... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians look over the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. Targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1605

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians look over the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and b... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Polar Lander is prepared to receive a number of microprobes being added to the spacecraft. Scheduled to be launched on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1625

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Polar Lander is prepared to receive a number of microprobes being added to the spacecraft. Scheduled to ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the background, Chris Voorhees watches. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1628

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the backgr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers from the Jet Propulsion Laboratory open the drums containing the Mars microprobes that will hitchhike on the Mars Polar Lander. From left, they are Satish Krishnan, Charles Cruzan, Chris Voorhees and Arden Acord. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1626

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers from the Jet Propulsion Laboratory open the drums containing the Mars microprobes that will hitchhike on ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees and Satish Krishnan from the Jet Propulsion Laboratory remove a microprobe which will hitchhike on the Mars Polar Lander. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1627

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees and Satish Krishnan from the Jet Propulsion Laboratory remove a microprobe which will hitchhike on... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet Propulsion Laboratory, observe a Mars microprobe on the workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millelnnium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1629

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the two Mars microprobes are shown mounted on opposite sides of the Mars Polar Lander. The two microprobes and the lander are scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1648

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the two Mars microprobes are shown mounted on opposite sides of the Mars Polar Lander. The two microprobes and th... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1645

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, sch... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1641

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars mic... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker carries a Mars microprobe to the Mars Polar Lander at left. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1646

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker carries a Mars microprobe to the Mars Polar Lander at left. Two microprobes will hitchhike on the la... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1642

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two micropro... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker checks the Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1643

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker checks the Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), two JPL workers measure a Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1644

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), two JPL workers measure a Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers prepare to mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1647

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers prepare to mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1720

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for la... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1723

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. At the extreme right can be seen the lander in another work area. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1719

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10... More

Previous

of 8

Next