fixture, spacecraft

214 media by topicpage 1 of 3
RMS / PFTA operations using grapple fixture number (no.) 5

RMS / PFTA operations using grapple fixture number (no.) 5

STS008-07-149 (2 Sept 1983) --- Many hours were spent, by its crew members, running tests with the Payload Flight Test Article (PFTA) and the Remote Manipulator System (RMS). The bar-bell shaped test device an... More

Daimler-Benz Aerospace staff prepare to remove the lift  fixture used to install the back cover on the Huygens probe, the conical structure in the  white workstand, in the Payload Hazardous Servicing Facility at KSC. Instruments  mounted on the probe, which was developed by the European Space Agency (ESA), will  receive atmospheric and surface data on Saturn’s main moon, Titan, to send back to Earth  as part of the Cassini mission. The back cover, yet to be attached to the Cassini orbiter,  will protect the probe during descent onto Titan. A four-year, close-up study of the  Saturnian system, Cassini is scheduled for launch from Cape Canaveral Air Station in  October 1997. It will take seven years for the spacecraft to reach Saturn. Aerospatiale is  the prime contractor for ESA KSC-97PC1021

Daimler-Benz Aerospace staff prepare to remove the lift fixture used ...

Daimler-Benz Aerospace staff prepare to remove the lift fixture used to install the back cover on the Huygens probe, the conical structure in the white workstand, in the Payload Hazardous Servicing Facility a... More

Jet Propulsion Laboratory (JPL) workers David Rice,  at left, and Johnny Melendez rotate a radioisotope thermoelectric generator (RTG) to  the horizontal position on a lift fixture in the Payload Hazardous Servicing Facility. The  RTG is one of three generators which will provide electrical power for the Cassini  spacecraft mission to the Saturnian system. The RTGs will be installed on the  powered-up spacecraft for mechanical and electrical verification testing. RTGs use heat  from the natural decay of plutonium to generate electric power. The generators enable  spacecraft to operate far from the Sun where solar power systems are not feasible. The  Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur  expendable launch vehicle. Cassini is built and managed for NASA by JPL KSC-97PC1069

Jet Propulsion Laboratory (JPL) workers David Rice, at left, and John...

Jet Propulsion Laboratory (JPL) workers David Rice, at left, and Johnny Melendez rotate a radioisotope thermoelectric generator (RTG) to the horizontal position on a lift fixture in the Payload Hazardous Serv... More

This radioisotope thermoelectric generator (RTG), at  center, will undergo mechanical and electrical verification testing now that it has been  installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. A  handling fixture, at far left, is still attached. Three RTGs will provide electrical power to  Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at  Saturn. RTGs use heat from the natural decay of plutonium to generate electric power.  The generators enable spacecraft to operate far from the Sun where solar power  systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard  a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA  by the Jet Propulsion Laboratory KSC-97PC1067

This radioisotope thermoelectric generator (RTG), at center, will und...

This radioisotope thermoelectric generator (RTG), at center, will undergo mechanical and electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servi... More

This radioisotope thermoelectric generator (RTG), at  center, is ready for electrical verification testing now that it has been installed on the Cassini  spacecraft in the Payload Hazardous Servicing Facility. A handling fixture, at far left,  remains attached. This is the third and final RTG to be installed on Cassini for the  prelaunch tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to  the Saturnian system and during its four-year mission at Saturn. RTGs use heat from  the natural decay of plutonium to generate electric power. The generators enable  spacecraft to operate at great distances from the Sun where solar power systems are  not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan  IVB/Centaur expendable launch vehicle KSC-97PC1088

This radioisotope thermoelectric generator (RTG), at center, is ready...

This radioisotope thermoelectric generator (RTG), at center, is ready for electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. ... More

Supported on a lift fixture, this radioisotope  thermoelectric generator (RTG), at center, is hoisted from its storage base using the  airlock crane in the Payload Hazardous Servicing Facility (PHSF). Jet Propulsion  Laboratory (JPL) workers are preparing to install the RTG onto the Cassini spacecraft,  in background at left, for mechanical and electrical verification testing. The three RTGs  on Cassini will provide electrical power to the spacecraft on its 6.7-year trip to the  Saturnian system and during its four-year mission at Saturn. RTGs use heat from the  natural decay of plutonium to generate electric power. The generators enable spacecraft  to operate at great distances from the Sun where solar power systems are not feasible.  The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur  expendable launch vehicle. Cassini is built and managed by JPL KSC-97PC1093

Supported on a lift fixture, this radioisotope thermoelectric generat...

Supported on a lift fixture, this radioisotope thermoelectric generator (RTG), at center, is hoisted from its storage base using the airlock crane in the Payload Hazardous Servicing Facility (PHSF). Jet Propu... More

Jet Propulsion Laboratory (JPL) employees Norm  Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope  thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the  installation cart to a lift fixture in preparation for returning the power unit to storage. The  three RTGs underwent mechanical and electrical verification testing in the Payload  Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its  6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs  use heat from the natural decay of plutonium to generate electric power. The generators  enable spacecraft to operate at great distances from the Sun where solar power  systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a  Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL KSC-97PC1089

Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and...

Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the inst... More

Flight mechanics from NASA’s Jet Propulsion  Laboratory (JPL) in Pasadena, Calif., work on the lifting fixture that picks up the Cassini  spacecraft in KSC’s Payload Hazardous Servicing Facility. The orbiter alone weighs  about 4,750 pounds (2,150 kilograms). At launch, the combined orbiter, Huygens probe,  launch vehicle adapter, and propellants will weigh about 12,346 pounds (5,600  kilograms). Scheduled for launch in October, the Cassini mission, a joint US-European  four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its  moons, seeks insight into the origins and evolution of the early solar system. JPL is  managing the Cassini project for NASA KSC-97PC1108

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasad...

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., work on the lifting fixture that picks up the Cassini spacecraft in KSC’s Payload Hazardous Servicing Facility. The orbiter al... More

VANDENBERG AIR FORCE BASE, CALIF.  -  Outside the clean room at Vandenberg Air Force Base, Calif., the SciSat-1 spacecraft (background) has been removed from the shipping container mounting base (lower left) and placed on the handling fixture. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

VANDENBERG AIR FORCE BASE, CALIF. - Outside the clean room at Vanden...

VANDENBERG AIR FORCE BASE, CALIF. - Outside the clean room at Vandenberg Air Force Base, Calif., the SciSat-1 spacecraft (background) has been removed from the shipping container mounting base (lower left) an... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers adjust wires on the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft during rotation on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0676

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers adjust wires on the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft during rotation o... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers help while an overhead crane lowers the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft onto a turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0670

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers help while an overhead crane lowers the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecra... More

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers again rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0677

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities ne...

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers again rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers make adjustments to the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft now resting on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0671

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers make adjustments to the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft now resting o... More

KENNEDY SPACE CENTER, FLA. -- Workers at Astrotech Space Operations facilities near KSC get ready to attach an overhead crane to the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft before lifting.  They are moving it to a turnover fixture that will rotate it for prelaunch testing.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0666

KENNEDY SPACE CENTER, FLA. -- Workers at Astrotech Space Operations fa...

KENNEDY SPACE CENTER, FLA. -- Workers at Astrotech Space Operations facilities near KSC get ready to attach an overhead crane to the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spac... More

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers check the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft after completing rotation on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0679

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities ne...

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers check the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft after completing rotation on t... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft is ready for lifting.  It is being moved to a turnover fixture that will rotate it for prelaunch testing.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0667

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft is ready for lifting. It is being moved ... More

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers remove protective covers from the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft now resting on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0672

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities ne...

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers remove protective covers from the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft now re... More

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers begin to rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0674

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities ne...

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers begin to rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixt... More

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers begin to rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0673

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities ne...

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers begin to rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixt... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft is carried across the floor by an overhead crane.  MESSENGER is being moved to a turnover fixture that will rotate it for prelaunch testing.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0668

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft is carried across the floor by an overhea... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers at left move a turnover fixture toward the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft.  The turnover fixture will rotate the spacecraft for prelaunch testing.   MESSENGER is undergoing prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0669

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers at left move a turnover fixture toward the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) space... More

KENNEDY SPACE CENTER, FLA. -- - Astrotech Space Operations facilities near KSC, workers check the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft  as it rotates on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0675

KENNEDY SPACE CENTER, FLA. -- - Astrotech Space Operations facilities ...

KENNEDY SPACE CENTER, FLA. -- - Astrotech Space Operations facilities near KSC, workers check the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft as it rotates on the turnov... More

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers complete rotation of the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture.  Workers will perform the propulsion system phasing test - firing gas through the thrusters in order to verify that the right thrusters fire when expected - as part of prelaunch testing at the site.  Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009. KSC-04pd0678

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities ne...

KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers complete rotation of the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover... More

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture raises the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2641

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture raises the fa...

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture raises the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Ca... More

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is secured to the nose of the fairing enclosing New Horizons at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2639

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is secured to...

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is secured to the nose of the fairing enclosing New Horizons at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New ... More

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is lowered toward the nose of the fairing enclosing New Horizons upon its arrival at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. A Lockheed Martin Atlas V launch vehicle stands ready to receive it in the background. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2638

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is lowered to...

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is lowered toward the nose of the fairing enclosing New Horizons upon its arrival at the Vertical Integration Facility at Complex 41 on Cape Canaveral Ai... More

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture lifts the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2640

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture lifts the fai...

KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture lifts the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle at the Vertical Integration Facility at Complex 41 on Cap... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians look over the spacecraft handling fixture that will be used to lift the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0782

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians look over the spacecraft handling fixture that will be used to lift the AIM spacecraft. AIM, which ... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0787

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for A... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0786

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of ... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft.   AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0785

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft. AIM, which stands for Aeronom... More

S127E009456 - STS-127 - PDGF Release on the JPM during Joint Operations

S127E009456 - STS-127 - PDGF Release on the JPM during Joint Operation...

The original finding aid described this as: Description: Survey view of Power and Data Grapple Fixture (PDGF) on panel JPM/04-06 of the JEM Pressurized Module (JPM). Photo was taken during STS-127 / Expeditio... More

CAPE CANAVERAL, Fla. –  The lifting fixture nicknamed the "Birdcage" is lifted by a crane to test the load capability.  The Birdcage will be used to lift the Crew Module, or CM, and Launch Abort System, or LAS, assembly for the Ares I-X rocket and to stack and de-stack the assembly from the Service Module/Spacecraft Adapter assembly.  It will also have the ability to lift and to stack and de-stack Stack-5  (all of the above components) from the Ares I-X in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Ares I-X is the test flight for the Ares I.   The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 321-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts, while their launch abort system will provide safe evacuation if a launch vehicle failure occurs.   Photo credit: NASA/Jack Pfaller KSC-2009-1421

CAPE CANAVERAL, Fla. – The lifting fixture nicknamed the "Birdcage" i...

CAPE CANAVERAL, Fla. – The lifting fixture nicknamed the "Birdcage" is lifted by a crane to test the load capability. The Birdcage will be used to lift the Crew Module, or CM, and Launch Abort System, or LAS,... More

CAPE CANAVERAL, Fla. –  The lifting fixture nicknamed the "Birdcage" is lifted by a crane to test the load capability.  The Birdcage will be used to lift the Crew Module, or CM, and Launch Abort System, or LAS, assembly for the Ares I-X rocket and to stack and de-stack the assembly from the Service Module/Spacecraft Adapter assembly.  It will also have the ability to lift and to stack and de-stack Stack-5  (all of the above components) from the Ares I-X in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida.  Ares I-X is the test flight for the Ares I.   The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 321-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts, while their launch abort system will provide safe evacuation if a launch vehicle failure occurs.   Photo credit: NASA/Jack Pfaller KSC-2009-1422

CAPE CANAVERAL, Fla. – The lifting fixture nicknamed the "Birdcage" i...

CAPE CANAVERAL, Fla. – The lifting fixture nicknamed the "Birdcage" is lifted by a crane to test the load capability. The Birdcage will be used to lift the Crew Module, or CM, and Launch Abort System, or LAS,... More

CAPE CANAVERAL, Fla. –    The yellow framework seen here is the lifting fixture nicknamed the "Birdcage" that will have the ability to lift the Crew Module, or CM, and Launch Abort System, or LAS, assembly for the Ares I-X rocket and to stack and de-stack the assembly from the Service Module/Spacecraft Adapter assembly.  It will also have the ability to lift and to stack and de-stack Stack-5  (all of the above components) from the Ares I-X in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Ares I-X is the test flight for the Ares I.   The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 321-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts, while their launch abort system will provide safe evacuation if a launch vehicle failure occurs.   Photo credit: NASA/Jack Pfaller KSC-2009-1420

CAPE CANAVERAL, Fla. – The yellow framework seen here is the liftin...

CAPE CANAVERAL, Fla. – The yellow framework seen here is the lifting fixture nicknamed the "Birdcage" that will have the ability to lift the Crew Module, or CM, and Launch Abort System, or LAS, assembly for ... More

CAPE CANAVERAL, Fla. –   The yellow framework at center is the lifting fixture nicknamed the "Birdcage" that will have the ability to lift the Crew Module, or CM, and Launch Abort System, or LAS, assembly for the Ares I-X rocket and to stack and de-stack the assembly from the Service Module/Spacecraft Adapter assembly.  It will also have the ability to lift and to stack and de-stack Stack-5  (all of the above components) from the Ares I-X flight test vehicle in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Ares I-X is the test flight for the Ares I.   The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 321-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts, while their launch abort system will provide safe evacuation if a launch vehicle failure occurs.   Photo credit: NASA/Jack Pfaller KSC-2009-1419

CAPE CANAVERAL, Fla. – The yellow framework at center is the lifting...

CAPE CANAVERAL, Fla. – The yellow framework at center is the lifting fixture nicknamed the "Birdcage" that will have the ability to lift the Crew Module, or CM, and Launch Abort System, or LAS, assembly for t... More

CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Center in Florida, the canister containing the payload for space shuttle Endeavour’s STS-127 mission is secured in the Payload Changeout Room, a fixture of the pad’s Rotating Service Structure. Endeavour’s rollaround from Pad 39B to Pad 39A is planned for May 30. The STS-127 payload includes the Japan Aerospace Exploration Agency's Kibo Exposed Facility and the Experiment Logistics Module Exposed Section of the International Space Station. They will be installed on the Kibo laboratory already on the station. Launch of the STS-127 mission is targeted for June 13.  Photo credit: NASA/Kim Shiflett KSC-2009-3260

CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Cente...

CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Center in Florida, the canister containing the payload for space shuttle Endeavour’s STS-127 mission is secured in the Payload Changeout Room, a ... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, a technician disconnects the four-point lift fixture on NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft after its transfer from the transport dolly to the test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow KSC-2009-4863

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's As...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, a technician disconnects the four-point lift fixture on NASA's Wide-field Infrared Survey Explore... More

VANDENBERG AIR FORCE BASE, Calif. - At the Astrotech payload processing facility at Vandenberg Air Force Base in California, spacecraft technicians inspect the direct mate adapter, a transport fixture on which NASA's Wide-field Infrared Survey Explorer, or WISE, enclosed in an environmental covering, will be moved to Space Launch Complex 2.    WISE will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects which will be catalogued and provide a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Dec. 9.  For additional information, visit http://www.nasa.gov/wise.  Photo credit: NASA KSC-2009-6543

VANDENBERG AIR FORCE BASE, Calif. - At the Astrotech payload processin...

VANDENBERG AIR FORCE BASE, Calif. - At the Astrotech payload processing facility at Vandenberg Air Force Base in California, spacecraft technicians inspect the direct mate adapter, a transport fixture on which ... More

VANDENBERG AIR FORCE BASE, Calif. - At the Astrotech payload processing facility at Vandenberg Air Force Base in California, spacecraft technicians secure the transportation canister, in which NASA's Wide-field Infrared Survey Explorer, or WISE, is enclosed, to the direct mate adapter, a transport fixture, for the spacecraft's move to Space Launch Complex 2.    WISE will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects which will be catalogued and provide a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Dec. 9.  For additional information, visit http://www.nasa.gov/wise.  Photo credit: NASA/Daniel Liberotti, VAFB KSC-2009-6547

VANDENBERG AIR FORCE BASE, Calif. - At the Astrotech payload processin...

VANDENBERG AIR FORCE BASE, Calif. - At the Astrotech payload processing facility at Vandenberg Air Force Base in California, spacecraft technicians secure the transportation canister, in which NASA's Wide-field... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module.     Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller KSC-2010-5290

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, tes...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module.         Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller KSC-2010-5291

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, tes...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test ... More

VANDENBERG AIR FORCE BASE, Calif. – In Building 1555 at Vandenberg Air Force Base in California, Orbital Sciences Corp. technicians connect the third stage of the Taurus XL rocket to the avionics of the temporary vehicle interface fixture. The fixture will come off once integrated with the encapsulated Glory spacecraft at the launch site.      The Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E, will take NASA's Glory satellite into low Earth. Glory is scheduled to collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2010-5725

VANDENBERG AIR FORCE BASE, Calif. – In Building 1555 at Vandenberg Air...

VANDENBERG AIR FORCE BASE, Calif. – In Building 1555 at Vandenberg Air Force Base in California, Orbital Sciences Corp. technicians connect the third stage of the Taurus XL rocket to the avionics of the tempora... More

VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, workers in a bucket begin the process of removing the lifting fixture and sling from NASA's Glory upper stack after it was secured in place to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft.         The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-1464

VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at ...

VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, workers in a bucket begin the process of removing the lifting fixture and sling from NASA's Glory u... More

VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, workers in a bucket begin the process of removing the lifting fixture and sling from NASA's Glory upper stack after it was secured in place to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft.         The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-1463

VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at ...

VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, workers in a bucket begin the process of removing the lifting fixture and sling from NASA's Glory u... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is secured to the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.      Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2762

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is secured to the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Forc... More

VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/SAC-D spacecraft toward the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.    Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2760

VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/...

VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/SAC-D spacecraft toward the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vanden... More

VANDENBERG AIR FORCE BASE, Calif. -- A technician secures the Aquarius/SAC-D spacecraft to the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.  Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2761

VANDENBERG AIR FORCE BASE, Calif. -- A technician secures the Aquarius...

VANDENBERG AIR FORCE BASE, Calif. -- A technician secures the Aquarius/SAC-D spacecraft to the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenber... More

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide a turning fixture onto the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The fixture will be used to lift and lower the MMRTG onto the MMRTG integration cart. The cart will be used to install the MMRTG on Curiosity for a fit check. The MMRTG will be installed on the rover for launch at the pad.    The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6686

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servi...

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide a turning... More

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory rotate the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, using the turning fixture to align the MMRTG with the angle of the MMRTG integration cart behind it. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad.    The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6691

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servi...

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory rotate the mult... More

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory position the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture above the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad.    The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6694

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servi...

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory position the mu... More

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture toward the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad.    The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6692

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servi...

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide the multi... More

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture toward the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad.    The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6693

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servi...

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide the multi... More

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, still connected to the turning fixture, rests on a support base following the MMRTG fit check on the Curiosity rover. A mobile plexiglass radiation shield is in place between the MMRTG and the spacecraft technicians, at right, to help minimize the employees' radiation exposure.    The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett KSC-2011-6708

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servi...

CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Sci... More

CAPE CANAVERAL, Fla. -- Technicians, using an overhead crane in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, lift and secure NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, to a rotation fixture for testing.    A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life.  The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann KSC-2011-5886

CAPE CANAVERAL, Fla. -- Technicians, using an overhead crane in the Pa...

CAPE CANAVERAL, Fla. -- Technicians, using an overhead crane in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, lift and secure NASA's Mars Science Laboratory (MSL) rover, kn... More

CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is being prepared to be moved to a rotation fixture for testing. The spacecraft's backshell (right), which carries the parachute and several components used during later stages of entry, descent and landing, also is visible in the image.    A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life.  The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann KSC-2011-5878

CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at...

CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is being prepared to be moved to a ... More

CAPE CANAVERAL, Fla. -- Technicians, using an overhead crane in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, lift and secure NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, to a rotation fixture for testing.    A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life.  The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann KSC-2011-5885

CAPE CANAVERAL, Fla. -- Technicians, using an overhead crane in the Pa...

CAPE CANAVERAL, Fla. -- Technicians, using an overhead crane in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, lift and secure NASA's Mars Science Laboratory (MSL) rover, kn... More

CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is being prepared to be moved to a rotation fixture for testing. The spacecraft's backshell (left), which carries the parachute and several components used during later stages of entry, descent and landing, also is visible in the image.    A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life.  The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann KSC-2011-5876

CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at...

CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is being prepared to be moved to a ... More

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers attach a lifting fixture to NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) during preparations to hoist it from its shipping container.    The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March.  The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1163

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing faci...

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers attach a lifting fixture to NASA's Nuclear Spectroscopic Telescope Arra... More

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers prepare a lifting fixture to hoist NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) from its shipping container.    The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March.  The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1160

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing faci...

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers prepare a lifting fixture to hoist NASA's Nuclear Spectroscopic Telesco... More

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers release NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) from a lifting fixture.    The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March.  The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1173

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing faci...

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers release NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) from a li... More

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers position a lifting fixture toward NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) during preparations to hoist it from its shipping container.    The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March.  The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1162

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing faci...

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers position a lifting fixture toward NASA's Nuclear Spectroscopic Telescop... More

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, a worker is at the controls of the lifting fixture moving NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) away from its shipping container toward a handling dolly.    The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March.  The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1168

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing faci...

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, a worker is at the controls of the lifting fixture moving NASA's Nuclear Spectr... More

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, a lifting fixture is employed to hoist NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) from its shipping container.    The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March.  The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1165

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing faci...

VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, a lifting fixture is employed to hoist NASA's Nuclear Spectroscopic Telescope A... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California, technicians begin attaching the lifting device that will place NASA's NuSTAR spacecraft into the tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1375

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processi...

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California, technicians begin attaching the lifting device that will place NASA's NuSTAR spacecr... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California, technicians pull a plastic cover over NASA's NuSTAR spacecraft and the tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1385

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processi...

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California, technicians pull a plastic cover over NASA's NuSTAR spacecraft and the tilt-rotation... More

VANDENBERG AIR FORCE BASE, Calif. -- Technicians pull a protective plastic cover over NASA's NuSTAR spacecraft and the tilt-rotation fixture inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1386

VANDENBERG AIR FORCE BASE, Calif. -- Technicians pull a protective pla...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians pull a protective plastic cover over NASA's NuSTAR spacecraft and the tilt-rotation fixture inside Orbital Sciences' processing facility at Vandenberg Air Force ... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians inside Orbital Sciences' processing facility guide the lifting device as NASA's NuSTAR spacecraft is placed into a tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1382

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in C...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians inside Orbital Sciences' processing facility guide the lifting device as NASA's NuSTAR spacecraft is placed into a ti... More

VANDENBERG AIR FORCE BASE, Calif. -- NASA's NuSTAR spacecraft rests in the tilt-rotation fixture inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1384

VANDENBERG AIR FORCE BASE, Calif. -- NASA's NuSTAR spacecraft rests in...

VANDENBERG AIR FORCE BASE, Calif. -- NASA's NuSTAR spacecraft rests in the tilt-rotation fixture inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California. The spacecraft will be r... More

VANDENBERG AIR FORCE BASE, Calif. -- Technicians move the tilt-rotation fixture holding NASA's NuSTAR spacecraft inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1389

VANDENBERG AIR FORCE BASE, Calif. -- Technicians move the tilt-rotatio...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians move the tilt-rotation fixture holding NASA's NuSTAR spacecraft inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft ... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, technicians prepare NASA’s NuSTAR spacecraft to be lifted into a tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1368

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's pr...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, technicians prepare NASA’s NuSTAR spacecraft to be lifted into a tilt-rotation fixture. The spacecraft will... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians inside Orbital Sciences' processing facility prepare NASA's NuSTAR spacecraft and place it into a tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1370

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in C...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians inside Orbital Sciences' processing facility prepare NASA's NuSTAR spacecraft and place it into a tilt-rotation fixtu... More

VANDENBERG AIR FORCE BASE, Calif. -- Now inside a tilt-rotation fixture and covered in protective plastic, NASA's NuSTAR spacecraft is prepared for joining with the Pegasus XL rocket inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1387

VANDENBERG AIR FORCE BASE, Calif. -- Now inside a tilt-rotation fixtur...

VANDENBERG AIR FORCE BASE, Calif. -- Now inside a tilt-rotation fixture and covered in protective plastic, NASA's NuSTAR spacecraft is prepared for joining with the Pegasus XL rocket inside Orbital Sciences' pr... More

VANDENBERG AIR FORCE BASE, Calif. -- Technicians carefully guide the tilt-rotation fixture as it is lowered toward NASA's NuSTAR spacecraft inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1373

VANDENBERG AIR FORCE BASE, Calif. -- Technicians carefully guide the t...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians carefully guide the tilt-rotation fixture as it is lowered toward NASA's NuSTAR spacecraft inside Orbital Sciences' processing facility at Vandenberg Air Force B... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California, NASA's NuSTAR spacecraft has been placed into a tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1383

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processi...

VANDENBERG AIR FORCE BASE, Calif. -- Inside Orbital Sciences' processing facility at Vandenberg Air Force Base in California, NASA's NuSTAR spacecraft has been placed into a tilt-rotation fixture. The spacecraf... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians inside Orbital Sciences' processing facility watch as NASA's NuSTAR spacecraft is lifted by the tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1381

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in C...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians inside Orbital Sciences' processing facility watch as NASA's NuSTAR spacecraft is lifted by the tilt-rotation fixture... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, technicians prepare NASA’s NuSTAR spacecraft to be lifted into a tilt-rotation fixture. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1367

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's pr...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, technicians prepare NASA’s NuSTAR spacecraft to be lifted into a tilt-rotation fixture. The spacecraft will... More

VANDENBERG AIR FORCE BASE, Calif. -- Technicians move the tilt-rotation fixture holding NASA's NuSTAR spacecraft inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1388

VANDENBERG AIR FORCE BASE, Calif. -- Technicians move the tilt-rotatio...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians move the tilt-rotation fixture holding NASA's NuSTAR spacecraft inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft ... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, the forward end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, spacecraft protrudes from the turnover rotation fixture used to rotate it into a horizontal position.  Technicians are preparing to join NuSTAR with the Orbital Sciences Pegasus XL rocket that will launch it into space, a major milestone in prelaunch preparations.         After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1516

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's pr...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, the forward end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, spacecraft protrudes from the t... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians roll the turnover rotation fixture away from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, following its mating to an Orbital Sciences Pegasus XL rocket.  The turnover rotation fixture was used to rotate the spacecraft into a horizontal position and supported it during mating operations.  The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations.      After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1525

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians roll the turnover rotation fixture away from NASA's Nuclear Sp... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians check the interface of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, with its Orbital Sciences Pegasus XL rocket.  The spacecraft is secured inside the turnover rotation fixture used to rotate it into a horizontal position.  The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations.    After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1523

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians check the interface of NASA's Nuclear Spectroscopic Telescope ... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians monitor NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, secured inside a turnover rotation fixture, as it is mated to its Orbital Sciences Pegasus XL rocket.  The technicians are dressed in clean room attire, known as bunny suits.  The conjoining of the spacecraft with the rocket is a major milestone in prelaunch preparations.    After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1520

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians monitor NASA's Nuclear Spectroscopic Telescope Array, or NuSTA... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, the turnover rotation fixture has been removed from around NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, following its mating to an Orbital Sciences Pegasus XL rocket.  The turnover rotation fixture was used to rotate the spacecraft into a horizontal position and supported it during mating operations.  The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations.          After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1526

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, the turnover rotation fixture has been removed from around NASA's Nuclear ... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, secured inside a turnover rotation fixture, moves toward interface with its Orbital Sciences Pegasus XL rocket.  The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations.      After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1522

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, secured inside a ... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, the forward end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, spacecraft protrudes from a turnover rotation fixture as the spacecraft is mated to its Orbital Sciences Pegasus XL rocket.  The conjoining of the spacecraft with the rocket is a major milestone in prelaunch preparations.      After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1519

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, the forward end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians monitor NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, secured inside a turnover rotation fixture, as it moves toward interface with its Orbital Sciences Pegasus XL rocket.  The technicians are dressed in clean room attire, known as bunny suits.  The conjoining of the spacecraft with the rocket is a major milestone in prelaunch preparations.        After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1521

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians monitor NASA's Nuclear Spectroscopic Telescope Array, or NuSTA... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians pull the turnover rotation fixture away from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, following its mating to an Orbital Sciences Pegasus XL rocket.  The turnover rotation fixture was used to rotate the spacecraft into a horizontal position and supported it during mating operations.  The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations.        After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1524

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians pull the turnover rotation fixture away from NASA's Nuclear Sp... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, this separation ring, installed on the aft end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, is the mating interface between the spacecraft and the upper stage of the Orbital Sciences Pegasus XL rocket which will place it in orbit.  Behind the ring is part of the turnover rotation fixture, the C-plate, which protects the spacecraft during mating operations. The conjoining of the spacecraft with the rocket is a major milestone in prelaunch preparations.          After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1517

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's pr...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, this separation ring, installed on the aft end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, ... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, the forward end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, spacecraft protrudes from the turnover rotation fixture used to rotate it into a horizontal position.  Preparations are under way to join NuSTAR with the Orbital Sciences Pegasus XL rocket that will launch it into space, a major milestone in launch preparations.          After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1515

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's pr...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's processing facility in California, the forward end of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, spacecraft protrudes from the t... More

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, the solar panels on NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, are in view after the removal of the turnover rotation fixture from around the spacecraft.   The fixture was used to rotate the spacecraft into a horizontal position and supported it during its mating to an Orbital Sciences Pegasus XL rocket.  The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations.          After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1527

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure ...

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, the solar panels on NASA's Nuclear Spectroscopic Telescope Array, or NuSTA... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6439

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6443

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6433

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6437

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6434

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6438

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6445

CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the h...

CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launc... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6442

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6431

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture ar...

CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is de... More

CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs KSC-2012-6430

CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture i...

CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precis... More

Previous

of 3

Next