water test, cape canaveral

74 media by topicpage 1 of 1
KENNEDY SPACE CENTER, FLA. --   This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1099

KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of th...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed ... More

A Trident II D-5 intercontinental ballistic missile lifts off from the water after being launched from the submerged nuclear-powered strategic missile submarine USS TENNESSEE (SSBN-734). This is the fourth submerged launch of the Trident II test series. First view in a series of four

A Trident II D-5 intercontinental ballistic missile lifts off from the...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: PHCM David Campbell Release Status: Released t... More

A Trident II D-5 intercontinental ballistic missile emerges from the water after being launched from the submerged nuclear-powered strategic missile submarine USS TENNESSEE (SSBN-734). This is the fourth submerged launch of the Trident II test series. First view in a series of four

A Trident II D-5 intercontinental ballistic missile emerges from the w...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: PHCM David Campbell Release Status: Released t... More

A Trident II D-5 intercontinental ballistic missile lifts off from the water after being launched from the submerged nuclear-powered strategic missile submarine USS TENNESSEE (SSBN-734). This is the fourth submerged launch of the Trident II test series. First view in a series of four

A Trident II D-5 intercontinental ballistic missile lifts off from the...

The original finding aid described this photograph as: Base: Cape Canaveral State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: PHCM David Campbell Release Status: Released t... More

KENNEDY SPACE CENTER, FLA. -- Thomas Lippitt of NASA's Advanced Systems Development (ASD) laboratory observes robotic operations as Chris Nicholson, owner of Deep Sea Systems, and Bill Jones of NASA's ASD laboratory operate the unmanned robotic submersible recovery system, known as Max Rover, during a test of the system at the Trident Pier at Port Canaveral. The submersible is seen in the water with the Diver Operated Plug (DOP). Kennedy Space Center's solid rocket booster (SRB) retrieval team and ASD laboratory staff hope that the new robotic technology will make the process of inserting the plug safer and less strenuous. Currently, scuba divers manually insert the DOP into the aft nozzle of a jettisoned SRB 60 to 70 feet below the surface of the Atlantic Ocean. After the plug is installed, water is pumped out of the booster allowing it to float horizontally. It is then towed back to Hangar AF at Cape Canaveral Air Station for refurbishment. Deep Sea Systems of Falmouth, Mass., built the submersible for NASA KSC-97PC1300

KENNEDY SPACE CENTER, FLA. -- Thomas Lippitt of NASA's Advanced System...

KENNEDY SPACE CENTER, FLA. -- Thomas Lippitt of NASA's Advanced Systems Development (ASD) laboratory observes robotic operations as Chris Nicholson, owner of Deep Sea Systems, and Bill Jones of NASA's ASD labor... More

KENNEDY SPACE CENTER, FLA. -- Technicians lower the unmanned robotic submersible recovery system, known as Max Rover, into the water at the Trident Pier at Port Canaveral during a test of the system. Kennedy Space Center's solid rocket booster (SRB) retrieval team and Advanced Systems Development laboratory staff hope that the new robotic technology will make the process of inserting the Diver Operated Plug (DOP) into the aft nozzle of a spent SRB safer and less strenuous. Currently, scuba divers manually insert the DOP into the aft nozzle of a jettisoned SRB 60 to 70 feet below the surface of the Atlantic Ocean. After the plug is installed, water is pumped out of the booster allowing it to float horizontally. It is then towed back to Hangar AF at Cape Canaveral Air Station. Deep Sea Systems of Falmouth, Mass., built the submersible for NASA KSC-97PC1301

KENNEDY SPACE CENTER, FLA. -- Technicians lower the unmanned robotic s...

KENNEDY SPACE CENTER, FLA. -- Technicians lower the unmanned robotic submersible recovery system, known as Max Rover, into the water at the Trident Pier at Port Canaveral during a test of the system. Kennedy Sp... More

KENNEDY SPACE CENTER, FLA. -- As scuba divers stand by, a Diver Operated Plug (DOP) is lowered into the water at the Trident Pier at Port Canaveral during a test of the unmanned robotic submersible recovery system, known as Max Rover. Kennedy Space Center's solid rocket booster (SRB) retrieval team and Advanced Systems Development laboratory staff hope that the new robotic technology will make the process of inserting the plug into spent SRBs safer and less strenuous. Currently, scuba divers manually insert the DOP into the aft nozzle of a jettisoned SRB 60 to 70 feet below the surface of the Atlantic Ocean. After the plug is installed, water is pumped out of the booster allowing it to float horizontally. It is then towed back to Hangar AF at Cape Canaveral Air Station for refurbishment. Deep Sea Systems of Falmouth, Mass., built the submersible for NASA KSC-97PC1298

KENNEDY SPACE CENTER, FLA. -- As scuba divers stand by, a Diver Operat...

KENNEDY SPACE CENTER, FLA. -- As scuba divers stand by, a Diver Operated Plug (DOP) is lowered into the water at the Trident Pier at Port Canaveral during a test of the unmanned robotic submersible recovery sys... More

KENNEDY SPACE CENTER, FLA. -- STS-95 Mission Specialist Stephen K. Robinson injects water into the base of the seed container where plants will grow during the upcoming mission. This is part of the Biological Research in Canisters (BRIC) experiment which is at the SPACEHAB Payload Processing Facility, Cape Canaveral, Fla. This experiment will fly in SPACEHAB in Discovery’s payload bay. STS-95 is scheduled to launch from pad 39B at KSC on Oct. 29, 1998. The mission also includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as experiments on space flight and the aging process KSC-98pc864

KENNEDY SPACE CENTER, FLA. -- STS-95 Mission Specialist Stephen K. Rob...

KENNEDY SPACE CENTER, FLA. -- STS-95 Mission Specialist Stephen K. Robinson injects water into the base of the seed container where plants will grow during the upcoming mission. This is part of the Biological R... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the protective covering for the Mars Polar Lander is removed so technicians can prepare the Lander for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1236

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the protective covering for the Mars Polar Lander is removed so technicians can prepare the Lander for testing, wh... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1235

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1230

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instrumen... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1231

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is lowered onto a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1233

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is lowered onto a portable stand. The Lander will undergo testing, including a fu... More

KENNEDY SPACE CENTER, FLA.  --  In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1229

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsu...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of th... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is swung out of the way before testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1232

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is swung out of the way before testing, which includes a functional test of the s... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1234

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a func... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians test the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1337

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians test the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-p... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1720

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for la... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1723

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. At the extreme right can be seen the lander in another work area. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1719

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a worker maneuvers the Mars Climate Orbiter, suspended by an overhead crane, to the spin test equipment at lower right. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1721

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a worker maneuvers the Mars Climate Orbiter, suspended by an overhead crane, to the spin test equipment at lower ... More

KENNEDY SPACE CENTER, Fla. -  The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility.  Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The rovers will be identical to each other, but will land at different regions of Mars.  The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003. KSC-03pd0771

KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration...

KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission ... More

KENNEDY SPACE CENTER, Fla. -  Workers in the Payload Hazardous Servicing Facility test the opening of the solar arrays on the Mars Exploration Rover-2 (MER-2).  Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The rovers will be identical to each other, but will land at different regions of Mars.  The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003. KSC-03pd0770

KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servici...

KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility test the opening of the solar arrays on the Mars Exploration Rover-2 (MER-2). Set to launch in Spring 2003, the MER Mission wil... More

KENNEDY SPACE CENTER, Fla. -  In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability.  Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The rovers will be identical to each other, but will land at different regions of Mars.  The first rover has a launch window opening May 30, and the second rover a window opening June 25. KSC-03pd0793

KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER ... More

KENNEDY SPACE CENTER, Fla. -  After another test on the Mars Exploration Rover-2 (MER-2) for mobility and maneuverability, workers check the rover.  Atop the rover can be seen the cameras, mounted on a Pancam Mast Assembly (PMA).  Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The rovers will be identical to each other, but will land at different regions of Mars.  The first rover has a launch window opening May 30, and the second rover a window opening June 25. KSC-03pd0788

KENNEDY SPACE CENTER, Fla. - After another test on the Mars Explorati...

KENNEDY SPACE CENTER, Fla. - After another test on the Mars Exploration Rover-2 (MER-2) for mobility and maneuverability, workers check the rover. Atop the rover can be seen the cameras, mounted on a Pancam M... More

KENNEDY SPACE CENTER, Fla. -  In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability.  Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The rovers will be identical to each other, but will land at different regions of Mars.  The first rover has a launch window opening May 30, and the second rover a window opening June 25. KSC-03pd0795

KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spri... More

KENNEDY SPACE CENTER, FLA. -  The aeroshell enclosing Mars Exploration Rover 2 and lander rests on a stand in the Payload Hazardous Servicing Facility.  The aeroshell will undergo a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet’s past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1371

KENNEDY SPACE CENTER, FLA. - The aeroshell enclosing Mars Exploration...

KENNEDY SPACE CENTER, FLA. - The aeroshell enclosing Mars Exploration Rover 2 and lander rests on a stand in the Payload Hazardous Servicing Facility. The aeroshell will undergo a spin stabilization test. Th... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin moving the aeroshell enclosing Mars Exploration Rover 2 and lander to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1366

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin moving the aeroshell enclosing Mars Exploration Rover 2 and lander to a rotation table for a spin stabilization test. Ther... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin raising an overhead crane that will be used to lift the aeroshell enclosing Mars Exploration Rover 2 and lander.  The descent and landing vehicle will be moved to a rotation table for a spin stabilization test.  v Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1364

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin raising an overhead crane that will be used to lift the aeroshell enclosing Mars Exploration Rover 2 and lander. The desce... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1372

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabiliz... More

KENNEDY SPACE CENTER, FLA. -  This is a closeup of the the aeroshell enclosing Mars Exploration Rover 2 and lander.  The descent and landing vehicle is being moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1367

KENNEDY SPACE CENTER, FLA. - This is a closeup of the the aeroshell e...

KENNEDY SPACE CENTER, FLA. - This is a closeup of the the aeroshell enclosing Mars Exploration Rover 2 and lander. The descent and landing vehicle is being moved to a rotation table for a spin stabilization t... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1370

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabiliz... More

KENNEDY SPACE CENTER, FLA. -  Workers in the Payload Hazardous Servicing Facility prepare an overhead crane to lift the aeroshell enclosing Mars Exploration Rover 2 and lander.  The descent and landing vehicle will be moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1363

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servici...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare an overhead crane to lift the aeroshell enclosing Mars Exploration Rover 2 and lander. The descent and landing vehicle ... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility position an overhead crane over the aeroshell enclosing Mars Exploration Rover 2 and lander.  The descent and landing vehicle will be moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1365

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility position an overhead crane over the aeroshell enclosing Mars Exploration Rover 2 and lander. The descent and landing vehicle wil... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility examine the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1369

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility examine the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilizat... More

KENNEDY SPACE CENTER, FLA. - The aeroshell enclosing Mars Exploration Rover 2 and lander is being moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1368

KENNEDY SPACE CENTER, FLA. - The aeroshell enclosing Mars Exploration ...

KENNEDY SPACE CENTER, FLA. - The aeroshell enclosing Mars Exploration Rover 2 and lander is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at diffe... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test.  There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station.  The second is scheduled for launch June 25. KSC-03pd1373

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabiliz... More

KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Explorat...

KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission ... More

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicin...

KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists ... More

KENNEDY SPACE CENTER, FLA. -  With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead cra...

KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identic... More

KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Explorat...

KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical ... More

KENNEDY SPACE CENTER, FLA. -  An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift th...

KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical ... More

KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Explorat...

KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission ... More

KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test.  The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.  Identical to each other, the rovers will land at different regions of Mars.  Launch for MER-2 (MER-A) is scheduled for June 5.

KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Explo...

KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to co... More

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is ready for a second spin test in the Payload Hazardous Servicing Facility.  After mating to the third stage of the Delta II rocket, MER-2 will be transported to the launch pad.  NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go.  The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is r...

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is ready for a second spin test in the Payload Hazardous Servicing Facility. After mating to the third stage of the Delta II rocket, MER-2 will... More

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is ready for a second spin test in the Payload Hazardous Servicing Facility.  After mating to the third stage of the Delta II rocket, MER-2 will be transported to the launch pad.  NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go.  The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is r...

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is ready for a second spin test in the Payload Hazardous Servicing Facility. After mating to the third stage of the Delta II rocket, MER-2 will... More

KENNEDY SPACE CENTER, FLA. -  The Mars Exploration Rover 2 (MER-2) is ready for a second spin test in the Payload Hazardous Servicing Facility.  After mating to the third stage of the Delta II rocket, MER-2 will be transported to the launch pad.  NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go.  The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is ...

KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) is ready for a second spin test in the Payload Hazardous Servicing Facility. After mating to the third stage of the Delta II rocket, MER-2 wil... More

KENNEDY SPACE CENTER, FLA. --   In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate.  Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1225

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fac...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate.  Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1224

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation ... More

KENNEDY SPACE CENTER, FLA. --   In the Payload Hazardous Servicing Facility, workers prepare to put the Phoenix spacecraft through a heat shield deployment test, with a firing of ordnance associated with the separation device.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate.  Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1221

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fac...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers prepare to put the Phoenix spacecraft through a heat shield deployment test, with a firing of ordnance associated with the se... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, a worker monitors the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate.  Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1223

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, a worker monitors the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separatio... More

KENNEDY SPACE CENTER, FLA. --    In the Payload Hazardous Servicing Facility, the Phoenix spacecraft undergoes a heat shield deployment test, with a firing of ordnance associated with the separation device.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate.  Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1222

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fa...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix spacecraft undergoes a heat shield deployment test, with a firing of ordnance associated with the separation device. Ph... More

KENNEDY SPACE CENTER, FLA. --  In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket.  The rocket is designated for the launch of the Phoenix Mars Lander spacecraft.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil.  Launch of Phoenix is targeted for Aug. 3.  Photo credit: NASA/Kim Shiflett KSC-07pd1234

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air For...

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket. The rocket is designated for the launch of ... More

KENNEDY SPACE CENTER, FLA. --  In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket.  The rocket is designated for the launch of the Phoenix Mars Lander spacecraft.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil.  Launch of Phoenix is targeted for Aug. 3.  Photo credit: NASA/Kim Shiflett KSC-07pd1237

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air For...

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket. The rocket is designated for the launch of ... More

KENNEDY SPACE CENTER, FLA. --   In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket, at right.  The rocket is designated for the launch of the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil.  Launch of Phoenix is targeted for Aug. 3.  Photo credit: NASA/Kim Shiflett KSC-07pd1236

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket, at right. The rocket is designated for the... More

KENNEDY SPACE CENTER, FLA. --   In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket, at right.  The rocket is designated for the launch of the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil.  Launch of Phoenix is targeted for Aug. 3.  Photo credit: NASA/Kim Shiflett KSC-07pd1235

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket, at right. The rocket is designated for the... More

KENNEDY SPACE CENTER, FLA. --   In the Payload Hazardous Servicing Facility at Cape Canaveral Air Force Station, workers retrieve the springs and bolts from the test firing on the Phoenix Mars Lander spacecraft to  deploy the solar panels. The deployment of the panels is part of the pre-launch testing under way.  Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil.  Phoenix is scheduled to launch Aug. 3.  Photo credit: NASA/George Shelton KSC-07pd1569

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fac...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Cape Canaveral Air Force Station, workers retrieve the springs and bolts from the test firing on the Phoenix Mars Lander spacecraft... More

KENNEDY SPACE CENTER, FLA. --   In the Payload Hazardous Servicing Facility at Cape Canaveral Air Force Station, this mesh bag holds the spring and bolt from the test firing to deploy the solar panels on the Phoenix Mars Lander spacecraft.   Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil.  Phoenix is scheduled to launch Aug. 3.  Photo credit: NASA/George Shelton KSC-07pd1568

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fac...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Cape Canaveral Air Force Station, this mesh bag holds the spring and bolt from the test firing to deploy the solar panels on the Ph... More

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing make their way toward the mockup Orion crew exploration vehicle floating in the open water of the Trident Basin at Port Canaveral, Fla.  They will place a flotation collar around the mockup vehicle. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020.  Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program.  Photo credit: NASA/Kim Shiflett KSC-2009-2562

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing make their way...

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing make their way toward the mockup Orion crew exploration vehicle floating in the open water of the Trident Basin at Port Canaveral, Fla. They will place a... More

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla.  On top of Orion are additional flotation devices. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams.  Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program.  Photo credit: NASA/Kim Shiflett KSC-2009-2563

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flot...

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional f... More

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing secure a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla.  On top of Orion are additional flotation devices. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams.  Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program.  Photo credit: NASA/Kim Shiflett KSC-2009-2565

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing secure a flota...

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing secure a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional fl... More

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing help prepare the mockup Orion crew exploration vehicle for testing in the open water at the Trident Basin at Port Canaveral, Fla.  The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program.  Photo credit: NASA/Kim Shiflett KSC-2009-2560

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing help prepare t...

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing help prepare the mockup Orion crew exploration vehicle for testing in the open water at the Trident Basin at Port Canaveral, Fla. The mockup vehicle will... More

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla.  On top of Orion are additional flotation devices. The mockup vehicle will undergo testing in open water. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams.  Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Orion, along with the Ares I and V rockets and the Altair lunar lander, are part of the Constellation Program.  Photo credit: NASA/Kim Shiflett KSC-2009-2564

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flot...

CAPE CANAVERAL, Fla. – Members of the 920th Rescue Wing release a flotation collar around the mockup Orion crew exploration vehicle at the Trident Basin at Port Canaveral, Fla. On top of Orion are additional f... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading.      Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2010-5310

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading.        Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2010-5308

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading.      Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2010-5309

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading.      Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2010-5311

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which... More

CAPE CANAVERAL, Fla. -- Overnight the temperature at Launch Pad 39A at NASA's Kennedy Space Center in Florida dipped to 27 degrees F, turning water into icicles on the pad structure. The arctic airmass, which is forecasted to last until Wednesday, postponed a tanking test of space shuttle Discovery's external fuel tank until no earlier than Dec. 17. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the  newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants.     Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann KSC-2010-5856

CAPE CANAVERAL, Fla. -- Overnight the temperature at Launch Pad 39A at...

CAPE CANAVERAL, Fla. -- Overnight the temperature at Launch Pad 39A at NASA's Kennedy Space Center in Florida dipped to 27 degrees F, turning water into icicles on the pad structure. The arctic airmass, which i... More

CAPE CANAVERAL, Fla. -- Launch Complex 39 is seen across brackish water as the sun rises at NASA's Kennedy Space Center in Florida. On the left is Launch Pad 39B, which is being restructured for future use. On the right is Launch Pad 39A, where space shuttle Discovery is being prepared for a tanking test.                Kennedy coexists with the Merritt Island National Wildlife Refuge, habitat to more than 310 species of birds, 25 mammals, 117 fish and 65 amphibians and reptiles. Photo credit: NASA/Frank Michaux KSC-2010-5868

CAPE CANAVERAL, Fla. -- Launch Complex 39 is seen across brackish wate...

CAPE CANAVERAL, Fla. -- Launch Complex 39 is seen across brackish water as the sun rises at NASA's Kennedy Space Center in Florida. On the left is Launch Pad 39B, which is being restructured for future use. On ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle.      Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2011-1449

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The train... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle.     Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2011-1446

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The train... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle.          Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2011-1447

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The trainin... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle.        Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2011-1448

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The train... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle.      Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann KSC-2011-1450

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, tra...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training ... More