workstand

380 media by topicpage 1 of 4
KENNEDY SPACE CENTER, FLA. --  Workers lower the suspended TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pp1642

KENNEDY SPACE CENTER, FLA. -- Workers lower the suspended TDRS-J spac...

KENNEDY SPACE CENTER, FLA. -- Workers lower the suspended TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, cu... More

In the Space Station Processing Facility, workers help guide the Multi-Purpose Logistics Module Donatello as it moves the length of the SSPF toward a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004 KSC-01pp0247

In the Space Station Processing Facility, workers help guide the Multi...

In the Space Station Processing Facility, workers help guide the Multi-Purpose Logistics Module Donatello as it moves the length of the SSPF toward a workstand. In the SSPF, Donatello will undergo processing by... More

KENNEDY SPACE CENTER, FLA. -- Workers prepare to lift the TDRS-J spacecraft for its move to a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pp1638

KENNEDY SPACE CENTER, FLA. -- Workers prepare to lift the TDRS-J space...

KENNEDY SPACE CENTER, FLA. -- Workers prepare to lift the TDRS-J spacecraft for its move to a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before ... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, an overhead crane carrying the P3 Integrated Truss Structure moves into place over a workstand where it will deposit the truss. The port-side P3 truss is scheduled to be added to the International Space Station on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The P3 will be attached to the first port truss segment, P1, being installed in an earlier mission KSC01pp0690

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, an overhead crane carrying the P3 Integrated Truss Structure moves into place over a workstand where it will deposit the truss. The port-s... More

CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Japan Aerospace Exploration Agency's Kibo Exposed Facility, or EF, is moved across the room to transfer it to a workstand. When it is installed on the Kibo laboratory, the EF will provide a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The EF, along with the Experiment Logistics Module Exposed Section,  will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch June 13, 2009.  Photo credit: NASA/Kim Shiflett KSC-2009-2789

CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NA...

CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Japan Aerospace Exploration Agency's Kibo Exposed Facility, or EF, is moved across the room to tra... More

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Kibo Experiment Logistics Module Exposed Section, or ELM-ES, is ready to be moved to a workstand. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station.  It can provide payload storage space and can carry up to three payloads at launch. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch Aug. 6.  Photo credit: NASA/Jack Pfaller KSC-2009-2625

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NAS...

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Kibo Experiment Logistics Module Exposed Section, or ELM-ES, is ready to be moved to a workstand. T... More

CAPE CANAVERAL, Fla. – Technicians move a portable workstand under a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  The engine is being rotated into a horizontal position with the aid of an engine-handling device attached to a crane.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1917

CAPE CANAVERAL, Fla. – Technicians move a portable workstand under a P...

CAPE CANAVERAL, Fla. – Technicians move a portable workstand under a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space... More

CAPE CANAVERAL, Fla. – A Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, is rotated into a horizontal position with the aid of an engine-handling device attached to a crane inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  The engine will be placed in a horizontal position on a portable workstand.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1916

CAPE CANAVERAL, Fla. – A Pratt and Whitney Rocketdyne space shuttle ma...

CAPE CANAVERAL, Fla. – A Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, is rotated into a horizontal position with the aid of an engine-handling device attached to a crane inside the SSME Proc... More

CAPE CANAVERAL, Fla. – A crane moves the engine-handling device away from the Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, that it rotated into a horizontal position inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  The engine is secured on a portable workstand before being transferred into a transportation canister.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1922

CAPE CANAVERAL, Fla. – A crane moves the engine-handling device away f...

CAPE CANAVERAL, Fla. – A crane moves the engine-handling device away from the Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, that it rotated into a horizontal position inside the SSME Processi... More

CAPE CANAVERAL, Fla. – Technicians attach a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, to an engine-handling device inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  Preparations are under way to rotate the engine into a horizontal position on a portable workstand.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1912

CAPE CANAVERAL, Fla. – Technicians attach a Pratt and Whitney Rocketdy...

CAPE CANAVERAL, Fla. – Technicians attach a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, to an engine-handling device inside the SSME Processing Facility, the engine shop at NASA’s Kennedy S... More

CAPE CANAVERAL, Fla. – Technicians secure a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, onto a portable workstand inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  The engine was rotated into a horizontal position with the aid of an engine-handling device attached to a crane.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1919

CAPE CANAVERAL, Fla. – Technicians secure a Pratt and Whitney Rocketdy...

CAPE CANAVERAL, Fla. – Technicians secure a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, onto a portable workstand inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Spac... More

CAPE CANAVERAL, Fla. – A crane moves a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, across the floor away from the work platforms inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  Operations are under way to rotate the engine into a horizontal position on a portable workstand.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1915

CAPE CANAVERAL, Fla. – A crane moves a Pratt and Whitney Rocketdyne sp...

CAPE CANAVERAL, Fla. – A crane moves a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, across the floor away from the work platforms inside the SSME Processing Facility, the engine shop at NASA... More

CAPE CANAVERAL, Fla. – Technicians monitor a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, as a crane lifts it off its base inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  Operations are under way to rotate the engine into a horizontal position on a portable workstand.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1913

CAPE CANAVERAL, Fla. – Technicians monitor a Pratt and Whitney Rocketd...

CAPE CANAVERAL, Fla. – Technicians monitor a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, as a crane lifts it off its base inside the SSME Processing Facility, the engine shop at NASA’s Kenn... More

CAPE CANAVERAL, Fla. – Technicians release a crane from an engine-handling device and the Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, that it rotated into a horizontal position inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida. The engine is secured on a portable workstand before being transferred into a transportation canister.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1921

CAPE CANAVERAL, Fla. – Technicians release a crane from an engine-hand...

CAPE CANAVERAL, Fla. – Technicians release a crane from an engine-handling device and the Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, that it rotated into a horizontal position inside the S... More

CAPE CANAVERAL, Fla. – Preparations are under way for the crane to release an engine-handling device used to rotate a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, into a horizontal position inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  The engine is secured on a portable workstand before being transferred into a transportation canister.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1920

CAPE CANAVERAL, Fla. – Preparations are under way for the crane to rel...

CAPE CANAVERAL, Fla. – Preparations are under way for the crane to release an engine-handling device used to rotate a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, into a horizontal position ... More

CAPE CANAVERAL, Fla. – Technicians lower a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, onto a portable workstand inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  The engine was rotated into a horizontal position with the aid of an engine-handling device attached to a crane.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1918

CAPE CANAVERAL, Fla. – Technicians lower a Pratt and Whitney Rocketdyn...

CAPE CANAVERAL, Fla. – Technicians lower a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, onto a portable workstand inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space... More

CAPE CANAVERAL, Fla. – Technicians move the work platforms away from a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, hanging above the floor inside the SSME Processing Facility, the engine shop at NASA’s Kennedy Space Center in Florida.  Operations are under way to rotate the engine into a horizontal position on a portable workstand.    The engine is one of the last SSMEs remaining at Kennedy and is being prepared for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines are scheduled to depart on April 9.  Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Tim Jacobs KSC-2012-1914

CAPE CANAVERAL, Fla. – Technicians move the work platforms away from a...

CAPE CANAVERAL, Fla. – Technicians move the work platforms away from a Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, hanging above the floor inside the SSME Processing Facility, the engine sh... More

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC977

The Lower Equipment Module of the Cassini spacecraft is lifted into a ...

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s rings and i... More

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC976

The Lower Equipment Module of the Cassini spacecraft is lifted into a ...

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s rings and i... More

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC978

The Lower Equipment Module of the Cassini spacecraft is lifted into a ...

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s rings and i... More

Daimler-Benz Aerospace staff prepare to remove the lift  fixture used to install the back cover on the Huygens probe, the conical structure in the  white workstand, in the Payload Hazardous Servicing Facility at KSC. Instruments  mounted on the probe, which was developed by the European Space Agency (ESA), will  receive atmospheric and surface data on Saturn’s main moon, Titan, to send back to Earth  as part of the Cassini mission. The back cover, yet to be attached to the Cassini orbiter,  will protect the probe during descent onto Titan. A four-year, close-up study of the  Saturnian system, Cassini is scheduled for launch from Cape Canaveral Air Station in  October 1997. It will take seven years for the spacecraft to reach Saturn. Aerospatiale is  the prime contractor for ESA KSC-97PC1021

Daimler-Benz Aerospace staff prepare to remove the lift fixture used ...

Daimler-Benz Aerospace staff prepare to remove the lift fixture used to install the back cover on the Huygens probe, the conical structure in the white workstand, in the Payload Hazardous Servicing Facility a... More

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D KSC-97PC1714

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttl...

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Inves... More

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D KSC-97PC1716

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttl...

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations a... More

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D KSC-97PC1713

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttl...

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Inves... More

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D KSC-97PC1717

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttl...

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations a... More

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D KSC-97PC1715

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttl...

The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Inves... More

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lowered into its workstand at Kennedy Space Center’s Space Station Processing Facility (SSPF), where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF KSC-98pc154

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lower...

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lowered into its workstand at Kennedy Space Center’s Space Station Processing Facility (SSPF), where it will be processed for flight on STS-97, s... More

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lifted from its container in Kennedy Space Center’s Space Station Processing Facility (SSPF) before it is moved into its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF KSC-98pc155

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lifte...

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lifted from its container in Kennedy Space Center’s Space Station Processing Facility (SSPF) before it is moved into its workstand, where it will... More

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved through Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF KSC-98pc150

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved...

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved through Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-9... More

Workers in Kennedy Space Center’s Space Station Processing Facility (SSPF) observe the Photovoltaic Module 1 Integrated Equipment Assembly (IEA) as it moves past them on its way to its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF KSC-98pc153

Workers in Kennedy Space Center’s Space Station Processing Facility (S...

Workers in Kennedy Space Center’s Space Station Processing Facility (SSPF) observe the Photovoltaic Module 1 Integrated Equipment Assembly (IEA) as it moves past them on its way to its workstand, where it will ... More

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past a Pressurized Mating Adapter in Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF KSC-98pc151

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved...

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past a Pressurized Mating Adapter in Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be ... More

KENNEDY SPACE CENTER, FLA. -- Technicians and workers observe preparations to join the Pressurized Mating Adapter (PMA)-2, seen here in its yellow workstand at right, to Node 1 (the International Space Station’s [ISS] structural building block) in KSC’s Space Station Processing Facility. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once PMA-2 is mated with the node. The node (surrounded here by scaffolding) and PMAs, which together will make up the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 KSC-98pc298

KENNEDY SPACE CENTER, FLA. -- Technicians and workers observe preparat...

KENNEDY SPACE CENTER, FLA. -- Technicians and workers observe preparations to join the Pressurized Mating Adapter (PMA)-2, seen here in its yellow workstand at right, to Node 1 (the International Space Station’... More

KENNEDY SPACE CENTER, FLA. -- The Pressurized Mating Adapter (PMA)-2, seen here in its yellow workstand, is moved on an air pallet toward Node 1, the International Space Station’s (ISS's) structural building block, in KSC’s Space Station Processing Facility. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once PMA-2 is mated with the node. Node 1 can be seen directly behind PMA-2. The node and PMAs, which together will make up the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88. KSC-98pc296

KENNEDY SPACE CENTER, FLA. -- The Pressurized Mating Adapter (PMA)-2, ...

KENNEDY SPACE CENTER, FLA. -- The Pressurized Mating Adapter (PMA)-2, seen here in its yellow workstand, is moved on an air pallet toward Node 1, the International Space Station’s (ISS's) structural building bl... More

KENNEDY SPACE CENTER, FLA. -- Technicians prepare to join the Pressurized Mating Adapter (PMA)-2, seen here in its yellow workstand at right, to Node 1 (the International Space Station’s [ISS] structural building block) in KSC’s Space Station Processing Facility. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once PMA-2 is mated with the node. The node and PMAs, which together will make up the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88. KSC-98pc297

KENNEDY SPACE CENTER, FLA. -- Technicians prepare to join the Pressuri...

KENNEDY SPACE CENTER, FLA. -- Technicians prepare to join the Pressurized Mating Adapter (PMA)-2, seen here in its yellow workstand at right, to Node 1 (the International Space Station’s [ISS] structural buildi... More

KENNEDY SPACE CENTER, FLA. -- The Pressurized Mating Adapter (PMA)-2 for the International Space Station (ISS), seen here in its yellow workstand, is moved on an air pallet toward Node 1, the space station’s structural building block, in KSC’s Space Station Processing Facility. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once PMA-2 is mated with the node. The node and PMAs, which together will make up the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 KSC-98pc295

KENNEDY SPACE CENTER, FLA. -- The Pressurized Mating Adapter (PMA)-2 f...

KENNEDY SPACE CENTER, FLA. -- The Pressurized Mating Adapter (PMA)-2 for the International Space Station (ISS), seen here in its yellow workstand, is moved on an air pallet toward Node 1, the space station’s st... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved to its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc301

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved to its workstand for proce... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc303

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc305

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc302

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved toward its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc306

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved toward its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc304

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. The node and PMA-1 are seen here on a workstand getting ready to be moved the next day to a weight and balance stand for an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Upon completing the interim determination, the node and PMA will be hoisted into the Shuttle payload transportation canister and the doors will be closed for a two-week leak check. Node 1 is a connecting passageway to the living and working areas of the space station. Node 1 is scheduled to fly on STS-88 KSC-98pc348

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the I...

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station P... More

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. The node and PMA-1 are seen here on a workstand getting ready to be moved the next day to a weight and balance stand for an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Upon completing the interim determination, the node and PMA will be hoisted into the Shuttle payload transportation canister and the doors will be closed for a two-week leak check. Node 1 is a connecting passageway to the living and working areas of the space station. Node 1 is scheduled to fly on STS-88. KSC-98pc346

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the I...

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station P... More

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and the Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. The node and PMA-1 are seen here on a workstand as a Boeing technician removes cables to get the node ready to be moved the next day to another stand for an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Upon completing the interim determination, the node and PMA will be hoisted into the Shuttle payload transportation canister and the doors will be closed for a two-week leak check. Node 1 is a connecting passageway to the living and working areas of the space station. Node 1 is scheduled to fly on STS-88 KSC-98pc347

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the I...

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and the Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Stati... More

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being hoisted from their workstand and moved to an element rotation stand, or test stand, where they will undergo an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88 KSC-98pc353

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the I...

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station P... More

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being hoisted from their workstand and moved to an element rotation stand, or test stand, where they will undergo an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88 KSC-98pc349

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the I...

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station P... More

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. Boeing technicians are connecting cables to the node and PMA-1 to remove them from their workstand to an element rotation stand, or test stand, where they will undergo an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88 KSC-98pc352

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the I...

KENNEDY SPACE CENTER, FLA. -- Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station P... More

KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan KSC-98pc646

KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) ...

KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space ... More

In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop KSC-98pc928

In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new B...

In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS... More

In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the transport cradle before being moved to the workstand. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop KSC-98pc927

In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new B...

In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the transport cradle before being moved to the workstand. The engine is scheduled to fly on the Space Shuttle Endeavo... More

The Spartan solar-observing deployable spacecraft is moved onto a workstand in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc985

The Spartan solar-observing deployable spacecraft is moved onto a work...

The Spartan solar-observing deployable spacecraft is moved onto a workstand in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. O... More

The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc1037

The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised...

The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is car... More

Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is lowered onto a workstand in the Space Shuttle Processing Facility. To the right can be seen the Rack Insertion Device and Leonardo, a Multi-Purpose Logistics Module. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc1038

Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOS...

Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is lowered onto a workstand in the Space Shuttle Processing Facility. To the right can be seen the Rack Insertion Device and Leonardo, a M... More

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1085

Technicians check the connections on the workstand holding the Mars Cl...

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will p... More

Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1083

Technicians lower the Mars Climate Orbiter onto its workstand in the S...

Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its c... More

Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1082

Technicians carefully maneuver the Mars Climate Orbiter toward its wor...

Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primaril... More

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1084

Technicians check the connections on the workstand holding the Mars Cl...

Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will p... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1081

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is headi... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1231

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27 KSC-98pc1327

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the ... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1314

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the pa... More

In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time KSC-98pc1410

In the Space Station Processing Facility, workers attach the overhead ...

In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Sp... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers adjust the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1373

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers adjust the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician checks out the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1372

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician checks out the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science in... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1601

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft s... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians begin to lift the Mars Polar Lander to move it to a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1599

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians begin to lift the Mars Polar Lander to move it to a workstand. The spacecraft is undergoing testing of science instruments and b... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians maneuver the backshell, a protective covering, to be placed over the Mars Polar Lander, sitting on the workstand. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1611

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians maneuver the backshell, a protective covering, to be placed over the Mars Polar Lander, sitting on... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander sits on the workstand encapsulated inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1612

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander sits on the workstand encapsulated inside the backshell, a protective cover. The solar-power... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1606

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing tes... More

Still suspended by a crane and cables in the Space Station Processing Facility, yet hidden by the top of the Z1 integrated truss structure, the Passive Common Berthing Mechanism (PCBM) is lowered onto the truss for attachment. Workers at the top of a workstand guide it into place. A component of the International Space Station (ISS), the Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999 KSC-98pc1661

Still suspended by a crane and cables in the Space Station Processing ...

Still suspended by a crane and cables in the Space Station Processing Facility, yet hidden by the top of the Z1 integrated truss structure, the Passive Common Berthing Mechanism (PCBM) is lowered onto the truss... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the background, Chris Voorhees watches. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1628

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the backgr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet Propulsion Laboratory, observe a Mars microprobe on the workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millelnnium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1629

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet... More

In the Payload Hazardous Service Facility, workers lower the Stardust spacecraft onto a workstand. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1633

In the Payload Hazardous Service Facility, workers lower the Stardust ...

In the Payload Hazardous Service Facility, workers lower the Stardust spacecraft onto a workstand. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing o... More

In the Payload Hazardous Service Facility, workers check the placement of the Stardust spacecraft's workstand in the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 20004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1635

In the Payload Hazardous Service Facility, workers check the placement...

In the Payload Hazardous Service Facility, workers check the placement of the Stardust spacecraft's workstand in the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus fina... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars KSC-98pc1642

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two micropro... More

In the Payload Hazardous Service Facility, workers move the Stardust spacecraft on its workstand from the air lock to the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1634

In the Payload Hazardous Service Facility, workers move the Stardust s...

In the Payload Hazardous Service Facility, workers move the Stardust spacecraft on its workstand from the air lock to the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1720

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for la... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the Space Station Processing Facility lowers the U.S. laboratory module, an element of the International Space Station, onto the workstand as KSC workers watch. The lab will undergo pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000 KSC-98pc1712

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the...

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the Space Station Processing Facility lowers the U.S. laboratory module, an element of the International Space Station, onto the workstand as K... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the Space Station Processing Facility moves the U.S. laboratory module, an element of the International Space Station, toward its workstand. The lab will undergo pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000 KSC-98pc1710

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the...

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the Space Station Processing Facility moves the U.S. laboratory module, an element of the International Space Station, toward its workstand. Th... More

KENNEDY SPACE CENTER, FLA. -- KSC workers watch as an overhead crane in the high bay of the Space Station Processing Facility lowers the U.S. laboratory module, an element of the International Space Station, onto the workstand. The lab will undergo pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000 KSC-98pc1713

KENNEDY SPACE CENTER, FLA. -- KSC workers watch as an overhead crane i...

KENNEDY SPACE CENTER, FLA. -- KSC workers watch as an overhead crane in the high bay of the Space Station Processing Facility lowers the U.S. laboratory module, an element of the International Space Station, on... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the Space Station Processing Facility moves the U.S. laboratory module, an element of the International Space Station, toward the workstand on the right. KSC workers watch its movement. The lab will undergo pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000 KSC-98pc1711

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the...

KENNEDY SPACE CENTER, FLA. -- An overhead crane in the high bay of the Space Station Processing Facility moves the U.S. laboratory module, an element of the International Space Station, toward the workstand on ... More

KENNEDY SPACE CENTER, FLA. -- On a workstand in the Space Station Processing Facility, KSC workers take a look at the U.S. laboratory module, an element of the International Space Station, after its protective cover has been removed. The lab will undergo pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000 KSC-98pc1714

KENNEDY SPACE CENTER, FLA. -- On a workstand in the Space Station Proc...

KENNEDY SPACE CENTER, FLA. -- On a workstand in the Space Station Processing Facility, KSC workers take a look at the U.S. laboratory module, an element of the International Space Station, after its protective ... More

KENNEDY SPACE CENTER, FLA. -- On a workstand in the Space Station Processing Facility, the U.S. laboratory module, an element of the International Space Station, is ready for pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000 KSC-98pc1715

KENNEDY SPACE CENTER, FLA. -- On a workstand in the Space Station Proc...

KENNEDY SPACE CENTER, FLA. -- On a workstand in the Space Station Processing Facility, the U.S. laboratory module, an element of the International Space Station, is ready for pre-launch preparations before its ... More

KENNEDY SPACE CENTER, FLA. -  In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module.  The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000.  It will become the centerpiece of scientific research on the ISS.  The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly.  The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier.  Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 ... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights KSC-98pc1752

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark P... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights KSC-98pc1751

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given t... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him on the left), and (the other side, left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrel and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights KSC-98pc1753

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name ... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights KSC-98pc1750

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right)... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers get ready to lift the heat shield for the Mars Polar Lander off the workstand before attaching it to the lander. Scheduled to be launched on Jan. 3, 1999, the lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998 KSC-98pc1867

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), work...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers get ready to lift the heat shield for the Mars Polar Lander off the workstand before attaching it to the lander. Scheduled to be launche... More

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is suspended from a crane in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being lowered to a workstand. There it will be mated to the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998 KSC-98pc1884

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is suspended from ...

KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is suspended from a crane in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being lowered to a workstand. There it will be mated to the ... More

KENNEDY SPACE CENTER, Fla. -  Workers in the Payload Changeout Room, Launch Pad 39A, check the progress of Columbia’s payload bay doors closing around the equipment inside to be used on mission STS-109.  During their 11 days in space,   the seven-member crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia’s payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments.  The STS-109 crew includes Commander Scott D. Altman, Pilot Duane G. Carey, and Mission Specialists John M. Grunsfeld, Nancy J. Currie, James H. Newman, Richard M. Linnehan and Michael J. Massimino.  Launch is scheduled for Feb. 28, 2002, at 6:48 a.m. EST (11:48 GMT). KSC-02pd0169

KENNEDY SPACE CENTER, Fla. - Workers in the Payload Changeout Room, L...

KENNEDY SPACE CENTER, Fla. - Workers in the Payload Changeout Room, Launch Pad 39A, check the progress of Columbia’s payload bay doors closing around the equipment inside to be used on mission STS-109. During... More

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Michael J. Massimino gets help suiting up for launch, scheduled for 6:22 a.m. EST March 1.  On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments. Mission STS-109 is the 27th flight of the orbiter Columbia and the 108th flight overall in NASA's Space Shuttle program. After the 11-day mission, Columbia is scheduled to land about 4:35 a.m. EST March 12 KSC-02pd0209

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Michael J. Mas...

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Michael J. Massimino gets help suiting up for launch, scheduled for 6:22 a.m. EST March 1. On mission STS-109, the crew will capture the Hubble Space Tel... More

KENNEDY SPACE CENTER, Fla. -  During suitup, STS-109 Mission Specialist Richard M. Linnehan shows he is ready for launch.  Liftoff of Space Shuttle Columbia is scheduled for 6:22 a.m. EST March 1.  On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments. Mission STS-109 is the 27th flight of the orbiter Columbia and the 108th flight overall in NASA's Space Shuttle program. After the 11-day mission, Columbia is scheduled to land about 4:35 a.m. EST March 12 KSC-02pd0213

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Mission Specialis...

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Mission Specialist Richard M. Linnehan shows he is ready for launch. Liftoff of Space Shuttle Columbia is scheduled for 6:22 a.m. EST March 1. On mission S... More

KENNEDY SPACE CENTER, FLA. --  STS-109 Mission Specialist James H. Newman gets a final fitting on his launch and entry suit two days before launch.  On mission STS-109, the seven-member crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed.  In addition, the telescope’s view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments.  The STS-109 crew also includes Commander Scott D. Altman, Pilot Duane G. Carey, and Mission Specialists John M. Grunsfeld, Nancy J. Currie, Richard M. Linnehan and Michael J. Massimino.  Launch is scheduled for Feb. 28, 2002, at 6:48 a.m. EST (11:48 GMT) KSC-02pd0162

KENNEDY SPACE CENTER, FLA. -- STS-109 Mission Specialist James H. New...

KENNEDY SPACE CENTER, FLA. -- STS-109 Mission Specialist James H. Newman gets a final fitting on his launch and entry suit two days before launch. On mission STS-109, the seven-member crew will capture the Hu... More

KENNEDY SPACE CENTER, Fla. - STS-109 Payload Commander John M. Grunsfeld gets a final fitting on his launch and entry suit two days before launch.  On mission STS-109, the seven-member crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed.  In addition, the telescope’s view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments.  The STS-109 crew also includes Commander Scott D. Altman, Pilot Duane G. Carey, and Mission Specialists James H. Newman, Nancy J. Currie, Richard M. Linnehan and Michael J. Massimino.  Launch is scheduled for Feb. 28, 2002, at 6:48 a.m. EST (11:48 GMT) KSC-02pd0166

KENNEDY SPACE CENTER, Fla. - STS-109 Payload Commander John M. Grunsfe...

KENNEDY SPACE CENTER, Fla. - STS-109 Payload Commander John M. Grunsfeld gets a final fitting on his launch and entry suit two days before launch. On mission STS-109, the seven-member crew will capture the Hub... More

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Payload Commander John M. Grunsfeld shows his readiness for launch.  Liftoff of Space Shuttle Columbia is scheduled for 6:22 a.m. EST March 1.  On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments. Mission STS-109 is the 27th flight of the orbiter Columbia and the 108th flight overall in NASA's Space Shuttle program. After the 11-day mission, Columbia is scheduled to land about 4:35 a.m. EST March 12 KSC-02pd0212

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Payload Commander ...

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Payload Commander John M. Grunsfeld shows his readiness for launch. Liftoff of Space Shuttle Columbia is scheduled for 6:22 a.m. EST March 1. On mission STS... More

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Commander Scott D. Altman gives a thumbs up for launch.  Liftoff of Space Shuttle Columbia is scheduled for 6:22 a.m. EST March 1.  On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments. Mission STS-109 is the 27th flight of the orbiter Columbia and the 108th flight overall in NASA's Space Shuttle program. After the 11-day mission, Columbia is scheduled to land about 4:35 a.m. EST March 12 KSC-02pd0210

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Commander Scott D....

KENNEDY SPACE CENTER, Fla. - During suitup, STS-109 Commander Scott D. Altman gives a thumbs up for launch. Liftoff of Space Shuttle Columbia is scheduled for 6:22 a.m. EST March 1. On mission STS-109, the cr... More

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Richard M. Linnehan gets a final fitting on his launch and entry suit two days before launch.  On mission STS-109, the seven-member crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed.  In addition, the telescope’s view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments.  The STS-109 crew also includes Commander Scott D. Altman, Pilot Duane G. Carey, and Mission Specialists John M. Grunsfeld, James H. Newman, Nancy J. Currie and Michael J. Massimino.  Launch is scheduled for Feb. 28, 2002, at 6:48 a.m. EST (11:48 GMT) KSC-02pd0164

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Richard M. Lin...

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Richard M. Linnehan gets a final fitting on his launch and entry suit two days before launch. On mission STS-109, the seven-member crew will capture the ... More

KENNEDY SPACE CENTER, Fla. -  STS-109 Mission Specialist Nancy Jane Currie is ready for launch after suiting up.  Liftoff is scheduled for 6:22 a.m. EST March 1.  On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Currie will be the primary arm operator.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments. Mission STS-109 is the 27th flight of the orbiter Columbia and the 108th flight overall in NASA's Space Shuttle program. After the 11-day mission, Columbia is scheduled to land about 4:35 a.m. EST March 12 KSC-02pd0208

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Nancy Jane Cu...

KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Nancy Jane Currie is ready for launch after suiting up. Liftoff is scheduled for 6:22 a.m. EST March 1. On mission STS-109, the crew will capture the H... More

KENNEDY SPACE CENTER, FLA. - STS-109 Pilot Duane G. Carey suits up for launch, scheduled for 6:22 a.m. EST March 1.  On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robotic arm and secure it on a workstand in Columbia's payload bay.  Four mission specialists will perform five scheduled spacewalks to complete system upgrades to the telescope. More durable solar arrays, a large gyroscopic assembly to help point the telescope properly, a new telescope power control unit, and a cooling system to restore the use of a key infrared camera and spectrometer unit, which has been dormant since 1999, will all be installed. In addition, the telescope's view of the Universe will be improved with the addition of the Advanced Camera for Surveys (ACS), which replaces the Faint Object Camera, the last of Hubble's original instruments. Mission STS-109 is the 27th flight of the orbiter Columbia and the 108th flight overall in NASA's Space Shuttle program. After the 11-day mission, Columbia is scheduled to land about 4:35 a.m. EST March 12 KSC-02pd0214

KENNEDY SPACE CENTER, FLA. - STS-109 Pilot Duane G. Carey suits up for...

KENNEDY SPACE CENTER, FLA. - STS-109 Pilot Duane G. Carey suits up for launch, scheduled for 6:22 a.m. EST March 1. On mission STS-109, the crew will capture the Hubble Space Telescope using the Shuttle's robo... More

Previous

of 4

Next